Search results for: Flood Forecasting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 358

Search results for: Flood Forecasting

358 Improving Flash Flood Forecasting with a Bayesian Probabilistic Approach: A Case Study on the Posina Basin in Italy

Authors: Zviad Ghadua, Biswa Bhattacharya

Abstract:

The Flash Flood Guidance (FFG) provides the rainfall amount of a given duration necessary to cause flooding. The approach is based on the development of rainfall-runoff curves, which helps us to find out the rainfall amount that would cause flooding. An alternative approach, mostly experimented with Italian Alpine catchments, is based on determining threshold discharges from past events and on finding whether or not an oncoming flood has its magnitude more than some critical discharge thresholds found beforehand. Both approaches suffer from large uncertainties in forecasting flash floods as, due to the simplistic approach followed, the same rainfall amount may or may not cause flooding. This uncertainty leads to the question whether a probabilistic model is preferable over a deterministic one in forecasting flash floods. We propose the use of a Bayesian probabilistic approach in flash flood forecasting. A prior probability of flooding is derived based on historical data. Additional information, such as antecedent moisture condition (AMC) and rainfall amount over any rainfall thresholds are used in computing the likelihood of observing these conditions given a flash flood has occurred. Finally, the posterior probability of flooding is computed using the prior probability and the likelihood. The variation of the computed posterior probability with rainfall amount and AMC presents the suitability of the approach in decision making in an uncertain environment. The methodology has been applied to the Posina basin in Italy. From the promising results obtained, we can conclude that the Bayesian approach in flash flood forecasting provides more realistic forecasting over the FFG.

Keywords: Flash flood, Bayesian, flash flood guidance, FFG, forecasting, Posina.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
357 Dam Operation Management Criteria during Floods: Case Study of Dez Dam in Southwest Iran

Authors: Ali Heidari

Abstract:

This paper presents the principles for improving flood mitigation operation in multipurpose dams and maximizing reservoir performance during flood occurrence with a focus on the real-time operation of gated spillways. The criteria of operation include the safety of dams during flood management, minimizing the downstream flood risk by decreasing the flood hazard and fulfilling water supply and other purposes of the dam operation in mid and long terms horizons. The parameters deemed to be important include flood inflow, outlet capacity restrictions, downstream flood inundation damages, economic revenue of dam operation, and environmental and sedimentation restrictions. A simulation model was used to determine the real-time release of the Dez Dam located in the Dez Rivers in southwest Iran, considering the gate regulation curves for the gated spillway. The results of the simulation model show that there is a possibility to improve the current procedures used in the real-time operation of the dams, particularly using gate regulation curves and early flood forecasting system results. The Dez Dam operation data show that in one of the best flood control records, 17% of the total active volume and flood control pool of the reservoir have not been used in decreasing the downstream flood hazard despite the availability of a flood forecasting system.

Keywords: Dam operation, flood control criteria, Dez Dam, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 300
356 Radar Hydrology: New Z/R Relationships for Klang River Basin Malaysia based on Rainfall Classification

Authors: R. Suzana, T. Wardah, A.B. Sahol Hamid

Abstract:

The use of radar in Quantitative Precipitation Estimation (QPE) for radar-rainfall measurement is significantly beneficial. Radar has advantages in terms of high spatial and temporal condition in rainfall measurement and also forecasting. In Malaysia, radar application in QPE is still new and needs to be explored. This paper focuses on the Z/R derivation works of radarrainfall estimation based on rainfall classification. The works developed new Z/R relationships for Klang River Basin in Selangor area for three different general classes of rain events, namely low (<10mm/hr), moderate (>10mm/hr, <30mm/hr) and heavy (>30mm/hr) and also on more specific rain types during monsoon seasons. Looking at the high potential of Doppler radar in QPE, the newly formulated Z/R equations will be useful in improving the measurement of rainfall for any hydrological application, especially for flood forecasting.

Keywords: Radar, Quantitative Precipitation Estimation, Z/R development, flood forecasting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103
355 Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality

Authors: S. Chuenchooklin, S. Taweepong, U. Pangnakorn

Abstract:

This research was conducted in the Mae Sot Watershed where located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urban area in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recent years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood events in 2013 as the worst studied case for all those communities in this municipality. Moreover, other problems are also faced in this watershed, such shortage water supply for domestic consumption and agriculture utilizations including a deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of the appropriated application of some short period rainfall forecasting model as they aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in a short period of 7-10 days in advance during rainy season instead of real time record. The IDV product can be present in an advance period of rainfall with time step of 3-6 hours was introduced to the communities. The result can be used as input data to the hydrologic modeling system model (HEC-HMS) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as the water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at the dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfying. The product of rainfall from IDV was fair while compared with observed data. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.

Keywords: Global rainfall, flood forecasting, hydrologic modeling system, river analysis system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382
354 Influence of Flood Detention Capability in Flood Prevention for Flood Disaster of Depression Area

Authors: Chia Lin Chan, Yi Ju Yang, Chih Chin Yang

Abstract:

Rainfall records of rainfall station including the rainfall potential per hour and rainfall mass of five heavy storms are explored, respectively from 2001 to 2010. The rationalization formula is to investigate the capability of flood peak duration of flood detention pond in different rainfall conditions. The stable flood detention model is also proposed by using system dynamic control theory to get the message of flood detention pond in this research. When rainfall frequency of one hour rainfall duration is more than 100-year frequency which exceeds the flood detention standard of 20-year frequency for the flood detention pond, the flood peak duration of flood detention pond is 1.7 hours at most even though the flood detention pond with maximum drainage potential about 15.0 m3/s of pumping system is constructed. If the rainfall peak current is more than maximum drainage potential, the flood peak duration of flood detention pond is about 1.9 hours at most. The flood detention pond is the key factor of stable drainage control and flood prevention. The critical factors of flood disaster is not only rainfall mass, but also rainfall frequency of heavy storm in different rainfall duration and flood detention frequency of flood detention system.

Keywords: Rainfall frequency, Rainfall duration, Rainfallintensity, Flood detention capability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
353 Study on Various Measures for Flood in Specific Region: A Case Study of the 2008 Lao Flood

Authors: Douangmala Kounsana, Toru Takahashi

Abstract:

In recent years, the number of natural disasters in Laos has a trend to increase, especially the disaster of flood. To make a flood plan risk management in the future, it is necessary to understand and analyze the characteristics of the rainfall and Mekong River level data. To reduce the damage, this paper presents the flood risk analysis in Luangprabang and Vientiane, the prefecture of Laos. In detail, the relationship between the rainfall and the Mekong River level has evaluated and appropriate countermeasure for flood was discussed.

Keywords: Lao flood, Mekong river, rainfall, risk management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
352 Quantitative Precipitation Forecast using MM5 and WRF models for Kelantan River Basin

Authors: Wardah, T., Kamil, A.A., Sahol Hamid, A.B., Maisarah, W.W.I

Abstract:

Quantitative precipitation forecast (QPF) from atmospheric model as input to hydrological model in an integrated hydro-meteorological flood forecasting system has been operational in many countries worldwide. High-resolution numerical weather prediction (NWP) models with grid cell sizes between 2 and 14 km have great potential in contributing towards reasonably accurate QPF. In this study the potential of two NWP models to forecast precipitation for a flood-prone area in a tropical region is examined. The precipitation forecasts produced from the Fifth Generation Penn State/NCAR Mesoscale (MM5) and Weather Research and Forecasting (WRF) models are statistically verified with the observed rain in Kelantan River Basin, Malaysia. The statistical verification indicates that the models have performed quite satisfactorily for low and moderate rainfall but not very satisfactory for heavy rainfall.

Keywords: MM5, Numerical weather prediction (NWP), quantitative precipitation forecast (QPF), WRF

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2887
351 Verification and Application of Finite Element Model Developed for Flood Routing in Rivers

Authors: A. L. Qureshi, A. A. Mahessar, A. Baloch

Abstract:

Flood wave propagation in river channel flow can be enunciated by nonlinear equations of motion for unsteady flow. It is difficult to find analytical solution of these non-linear equations. Hence, in this paper verification of the finite element model has been carried out against available numerical predictions and field data. The results of the model indicate a good matching with both Preissmann scheme and HEC-RAS model for a river reach of 29km at both sites (15km from upstream and at downstream end) for discharge hydrographs. It also has an agreeable comparison with the Preissemann scheme for the flow depth (stage) hydrographs. The proposed model has also been applying to forecast daily discharges at 400km downstream in the Indus River from Sukkur barrage of Sindh, Pakistan, which demonstrates accurate model predictions with observed the daily discharges. Hence, this model may be utilized for flood warnings in advance.

Keywords: Finite Element Method, Flood Forecasting, HEC-RAS, Indus river.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
350 A New Model for Production Forecasting in ERP

Authors: S. F. Wong, W. I. Ho, B. Lin, Q. Huang

Abstract:

ERP has been used in many enterprises for management, the accuracy of the production forecasting module is vital to the decision making of the enterprise, and the profit is affected directly. Therefore, enhancing the accuracy of the production forecasting module can also increase the efficiency and profitability. To deal with a lot of data, a suitable, reliable and accurate statistics model is necessary. LSSVM and Grey System are two main models to be studied in this paper, and a case study is used to demonstrate how the combination model is effective to the result of forecasting.

Keywords: ERP, Grey System, LSSVM, production forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
349 The Use of S Curves in Technology Forecasting and its Application On 3D TV Technology

Authors: Gizem Intepe, Tufan Koc

Abstract:

S-Curves are commonly used in technology forecasting. They show the paths of product performance in relation to time or investment in R&D. It is a useful tool to describe the inflection points and the limit of improvement of a technology. Companies use this information to base their innovation strategies. However inadequate use and some limitations of this technique lead to problems in decision making. In this paper first technology forecasting and its importance for company level strategies will be discussed. Secondly the S-Curve and its place among other forecasting techniques will be introduced. Thirdly its use in technology forecasting will be discussed based on its advantages, disadvantages and limitations. Finally an application of S-curve on 3D TV technology using patent data will also be presented and the results will be discussed.

Keywords: Patent analysis, Technological forecasting. S curves, 3D TV

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7708
348 Hourly Electricity Load Forecasting: An Empirical Application to the Italian Railways

Authors: M. Centra

Abstract:

Due to the liberalization of countless electricity markets, load forecasting has become crucial to all public utilities for which electricity is a strategic variable. With the goal of contributing to the forecasting process inside public utilities, this paper addresses the issue of applying the Holt-Winters exponential smoothing technique and the time series analysis for forecasting the hourly electricity load curve of the Italian railways. The results of the analysis confirm the accuracy of the two models and therefore the relevance of forecasting inside public utilities.

Keywords: ARIMA models, Exponential smoothing, Electricity, Load forecasting, Rail transportation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2589
347 Examination of Flood Runoff Reproductivity for Different Rainfall Sources in Central Vietnam

Authors: Do Hoai Nam, Keiko Udo, Akira Mano

Abstract:

This paper presents the combination of different precipitation data sets and the distributed hydrological model, in order to examine the flood runoff reproductivity of scattered observation catchments. The precipitation data sets were obtained from observation using rain-gages, satellite based estimate (TRMM), and numerical weather prediction model (NWP), then were coupled with the super tank model. The case study was conducted in three basins (small, medium, and large size) located in Central Vietnam. Calculated hydrographs based on ground observation rainfall showed best fit to measured stream flow, while those obtained from TRMM and NWP showed high uncertainty of peak discharges. However, calculated hydrographs using the adjusted rainfield depicted a promising alternative for the application of TRMM and NWP in flood modeling for scattered observation catchments, especially for the extension of forecast lead time.

Keywords: Flood forecast, rainfall-runoff model, satellite rainfall estimate, numerical weather prediction, quantitative precipitation forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
346 Study on Disaster Prevention Plan for an Electronic Industry in Thailand

Authors: S. Pullteap, M. Pathomsuriyaporn

Abstract:

In this article, a study of employee’s opinion to the factors that affect to the flood preventive and the corrective action plan in an electronic industry at the Sharp Manufacturing (Thailand) Co., Ltd. has been investigated. The surveys data of 175 workers and supervisors have, however, been selected for data analysis. The results is shown that the employees emphasize about the needs in a subsidy at the time of disaster at high levels of 77.8%, as the plan focusing on flood prevention of the rehabilitation equipment is valued at the intermediate level, which is 79.8%. Demonstration of the hypothesis has found that the different education levels has thus been affected to the needs factor at the flood disaster time. Moreover, most respondents give priority to flood disaster risk management factor. Consequently, we found that the flood prevention plan is valued at high level, especially on information monitoring, which is 93.4% for the supervisor item. The respondents largely assume that the flood will have impacts on the industry, up to 80%, thus to focus on flood management plans is enormous.

Keywords: Flood prevention plan, flood event, electronic industrial plant, disaster, risk management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
345 Machine Learning Methods for Flood Hazard Mapping

Authors: S. Zappacosta, C. Bove, M. Carmela Marinelli, P. di Lauro, K. Spasenovic, L. Ostano, G. Aiello, M. Pietrosanto

Abstract:

This paper proposes a neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The classification capability was compared with the flood hazard mapping River Basin Plans (Piani Assetto Idrogeologico, acronimed as PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), encoding four different increasing flood hazard levels. The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.

Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662
344 Forecasting of Flash Floods over Wadi Watier –Sinai Peninsula Using the Weather Research and Forecasting (WRF) Model

Authors: Moustafa S. El-Sammany

Abstract:

Flash floods are considered natural disasters that can cause casualties and demolishing of infra structures. The problem is that flash floods, particularly in arid and semi arid zones, take place in very short time. So, it is important to forecast flash floods earlier to its events with a lead time up to 48 hours to give early warning alert to avoid or minimize disasters. The flash flood took place over Wadi Watier - Sinai Peninsula, in October 24th, 2008, has been simulated, investigated and analyzed using the state of the art regional weather model. The Weather Research and Forecast (WRF) model, which is a reliable short term forecasting tool for precipitation events, has been utilized over the study area. The model results have been calibrated with the real data, for the same date and time, of the rainfall measurements recorded at Sorah gauging station. The WRF model forecasted total rainfall of 11.6 mm while the real measured one was 10.8 mm. The calibration shows significant consistency between WRF model and real measurements results.

Keywords: Early warning system, Flash floods forecasting, WadiWatier, WRF model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
343 Power Forecasting of Photovoltaic Generation

Authors: S. H. Oudjana, A. Hellal, I. Hadj Mahammed

Abstract:

Photovoltaic power generation forecasting is an important task in renewable energy power system planning and operating. This paper explores the application of neural networks (NN) to study the design of photovoltaic power generation forecasting systems for one week ahead using weather databases include the global irradiance, and temperature of Ghardaia city (south of Algeria) using a data acquisition system. Simulations were run and the results are discussed showing that neural networks Technique is capable to decrease the photovoltaic power generation forecasting error.

Keywords: Photovoltaic Power Forecasting, Regression, Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3716
342 Neural Network Ensemble-based Solar Power Generation Short-Term Forecasting

Authors: A. Chaouachi, R.M. Kamel, R. Ichikawa, H. Hayashi, K. Nagasaka

Abstract:

This paper presents the applicability of artificial neural networks for 24 hour ahead solar power generation forecasting of a 20 kW photovoltaic system, the developed forecasting is suitable for a reliable Microgrid energy management. In total four neural networks were proposed, namely: multi-layred perceptron, radial basis function, recurrent and a neural network ensemble consisting in ensemble of bagged networks. Forecasting reliability of the proposed neural networks was carried out in terms forecasting error performance basing on statistical and graphical methods. The experimental results showed that all the proposed networks achieved an acceptable forecasting accuracy. In term of comparison the neural network ensemble gives the highest precision forecasting comparing to the conventional networks. In fact, each network of the ensemble over-fits to some extent and leads to a diversity which enhances the noise tolerance and the forecasting generalization performance comparing to the conventional networks.

Keywords: Neural network ensemble, Solar power generation, 24 hour forecasting, Comparative study

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3236
341 Collaborative Planning and Forecasting

Authors: Neha Asthana, Vishal Krishna Prasad

Abstract:

Collaborative Planning and Forecasting is an innovative and systematic approach towards productive integration and assimilation of data synergized into information. The changing and variable market dynamics have persuaded global business chains to incorporate Collaborative Planning and Forecasting as an imperative tool. Thus, it is essential for the supply chains to constantly improvise, update its nature, and mould as per changing global environment.

Keywords: Information transfer, Forecasting, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
340 A Preliminary Study on the Suitability of Data Driven Approach for Continuous Water Level Modeling

Authors: Muhammad Aqil, Ichiro Kita, Moses Macalinao

Abstract:

Reliable water level forecasts are particularly important for warning against dangerous flood and inundation. The current study aims at investigating the suitability of the adaptive network based fuzzy inference system for continuous water level modeling. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the network. For this study, water levels data are available for a hydrological year of 2002 with a sampling interval of 1-hour. The number of antecedent water level that should be included in the input variables is determined by two statistical methods, i.e. autocorrelation function and partial autocorrelation function between the variables. Forecasting was done for 1-hour until 12-hour ahead in order to compare the models generalization at higher horizons. The results demonstrate that the adaptive networkbased fuzzy inference system model can be applied successfully and provide high accuracy and reliability for river water level estimation. In general, the adaptive network-based fuzzy inference system provides accurate and reliable water level prediction for 1-hour ahead where the MAPE=1.15% and correlation=0.98 was achieved. Up to 12-hour ahead prediction, the model still shows relatively good performance where the error of prediction resulted was less than 9.65%. The information gathered from the preliminary results provide a useful guidance or reference for flood early warning system design in which the magnitude and the timing of a potential extreme flood are indicated.

Keywords: Neural Network, Fuzzy, River, Forecasting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
339 Fuzzy Metric Approach for Fuzzy Time Series Forecasting based on Frequency Density Based Partitioning

Authors: Tahseen Ahmed Jilani, Syed Muhammad Aqil Burney, C. Ardil

Abstract:

In the last 15 years, a number of methods have been proposed for forecasting based on fuzzy time series. Most of the fuzzy time series methods are presented for forecasting of enrollments at the University of Alabama. However, the forecasting accuracy rates of the existing methods are not good enough. In this paper, we compared our proposed new method of fuzzy time series forecasting with existing methods. Our method is based on frequency density based partitioning of the historical enrollment data. The proposed method belongs to the kth order and time-variant methods. The proposed method can get the best forecasting accuracy rate for forecasting enrollments than the existing methods.

Keywords: Fuzzy logical groups, fuzzified enrollments, fuzzysets, fuzzy time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3168
338 Faults Forecasting System

Authors: Hanaa E.Sayed, Hossam A. Gabbar, Shigeji Miyazaki

Abstract:

This paper presents Faults Forecasting System (FFS) that utilizes statistical forecasting techniques in analyzing process variables data in order to forecast faults occurrences. FFS is proposing new idea in detecting faults. Current techniques used in faults detection are based on analyzing the current status of the system variables in order to check if the current status is fault or not. FFS is using forecasting techniques to predict future timing for faults before it happens. Proposed model is applying subset modeling strategy and Bayesian approach in order to decrease dimensionality of the process variables and improve faults forecasting accuracy. A practical experiment, designed and implemented in Okayama University, Japan, is implemented, and the comparison shows that our proposed model is showing high forecasting accuracy and BEFORE-TIME.

Keywords: Bayesian Techniques, Faults Detection, Forecasting techniques, Multivariate Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
337 Forecasting Enrollment Model Based on First-Order Fuzzy Time Series

Authors: Melike Şah, Konstantin Y.Degtiarev

Abstract:

This paper proposes a novel improvement of forecasting approach based on using time-invariant fuzzy time series. In contrast to traditional forecasting methods, fuzzy time series can be also applied to problems, in which historical data are linguistic values. It is shown that proposed time-invariant method improves the performance of forecasting process. Further, the effect of using different number of fuzzy sets is tested as well. As with the most of cited papers, historical enrollment of the University of Alabama is used in this study to illustrate the forecasting process. Subsequently, the performance of the proposed method is compared with existing fuzzy time series time-invariant models based on forecasting accuracy. It reveals a certain performance superiority of the proposed method over methods described in the literature.

Keywords: Forecasting, fuzzy time series, linguistic values, student enrollment, time-invariant model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
336 Annual Power Load Forecasting Using Support Vector Regression Machines: A Study on Guangdong Province of China 1985-2008

Authors: Zhiyong Li, Zhigang Chen, Chao Fu, Shipeng Zhang

Abstract:

Load forecasting has always been the essential part of an efficient power system operation and planning. A novel approach based on support vector machines is proposed in this paper for annual power load forecasting. Different kernel functions are selected to construct a combinatorial algorithm. The performance of the new model is evaluated with a real-world dataset, and compared with two neural networks and some traditional forecasting techniques. The results show that the proposed method exhibits superior performance.

Keywords: combinatorial algorithm, data mining, load forecasting, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
335 Urban Flood Control and Management - An Integrated Approach

Authors: Ranjan Sarukkalige, Joseph Sanjaya Ma

Abstract:

Flood management is one of the important fields in urban storm water management. Floods are influenced by the increase of huge storm event, or improper planning of the area. This study mainly provides the flood protection in four stages; planning, flood event, responses and evaluation. However it is most effective then flood protection is considered in planning/design and evaluation stages since both stages represent the land development of the area. Structural adjustments are often more reliable than nonstructural adjustments in providing flood protection, however structural adjustments are constrained by numerous factors such as political constraints and cost. Therefore it is important to balance both adjustments with the situation. The technical decisions provided will have to be approved by the higher-ups who have the power to decide on the final solution. Costs however, are the biggest factor in determining the final decision. Therefore this study recommends flood protection system should have been integrated and enforces more in the early stages (planning and design) as part of the storm water management plan. Factors influencing the technical decisions provided should be reduced as low as possible to avoid a reduction in the expected performance of the proposed adjustments.

Keywords: Urban Flood, flood protection, water management, storm water, cost,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
334 Modeling of Flood Mitigation Structures for Sarawak River Sub-basin Using Info Works River Simulation (RS)

Authors: Rosmina Bustami, Charles Bong, Darrien Mah, Afnie Hamzah, Marina Patrick

Abstract:

The distressing flood scenarios that occur in recent years at the surrounding areas of Sarawak River have left damages of properties and indirectly caused disruptions of productive activities. This study is meant to reconstruct a 100-year flood event that took place in this river basin. Sarawak River Subbasin was chosen and modeled using the one-dimensional hydrodynamic modeling approach using InfoWorks River Simulation (RS), in combination with Geographical Information System (GIS). This produces the hydraulic response of the river and its floodplains in extreme flooding conditions. With different parameters introduced to the model, correlations of observed and simulated data are between 79% – 87%. Using the best calibrated model, flood mitigation structures are imposed along the sub-basin. Analysis is done based on the model simulation results. Result shows that the proposed retention ponds constructed along the sub-basin provide the most efficient reduction of flood by 34.18%.

Keywords: Flood, Flood mitigation structure, InfoWorks RS, Retention pond, Sarawak River sub-basin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2672
333 Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region

Authors: B. Sir, M. Podhoranyi, S. Kuchar, T. Kocyan

Abstract:

Rainfall runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15 – May 18 2014). Prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice.

Keywords: Flood, HEC-HMS, Prediction, Rainfall – Runoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
332 Flood Hazard Mapping in Dikrong Basin of Arunachal Pradesh (India)

Authors: Aditi Bhadra, Sutapa Choudhury, Daita Kar

Abstract:

Flood zoning studies have become more efficient in recent years because of the availability of advanced computational facilities and use of Geographic Information Systems (GIS). In the present study, flood inundated areas were mapped using GIS for the Dikrong river basin of Arunachal Pradesh, India, corresponding to different return periods (2, 5, 25, 50, and 100 years). Further, the developed inundation maps corresponding to 25, 50, and 100 year return period floods were compared to corresponding maps developed by conventional methods as reported in the Brahmaputra Board Master Plan for Dikrong basin. It was found that, the average deviation of modelled flood inundation areas from reported map inundation areas is below 5% (4.52%). Therefore, it can be said that the modelled flood inundation areas matched satisfactorily with reported map inundation areas. Hence, GIS techniques were proved to be successful in extracting the flood inundation extent in a time and cost effective manner for the remotely located hilly basin of Dikrong, where conducting conventional surveys is very difficult.

Keywords: Flood hazard mapping, GIS, inundation area, return period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2957
331 Failure to React Positively to Flood Early Warning Systems: Lessons Learned by Flood Victims from Flash Flood Disasters: The Malaysia Experience

Authors: Mohamad Sukeri Khalid, Che Su Mustaffa, Mohd Najib Marzuki, Mohd Fo’ad Sakdan, Sapora Sipon, Mohd Taib Ariffin, Shazwani Shafiai

Abstract:

This paper describes the issues relating to the role of the flash flood early warning system provided by the Malaysian Government to the communities in Malaysia, specifically during the flash flood disaster in the Cameron Highlands, Malaysia. Normally, flash flood disasters can occur as a result of heavy rainfall in an area, and that water may possibly cause flooding via streams or narrow channels. The focus of this study is the flash flood disaster which occurred on 23 October 2013 in the Cameron Highlands, and as a result the Sungai Bertam overflowed after the release of water from the Sultan Abu Bakar Dam. This release of water from the dam caused flash flooding which led to damage to properties and also the death of residents and livestock in the area. Therefore, the effort of this study is to identify the perceptions of the flash flood victims on the role of the flash flood early warning system. For the purposes of this study, data were gathered through face-to-face interviews from those flood victims who were willing to participate in this study. This approach helped the researcher to glean in-depth information about their feelings and perceptions of the role of the flash flood early warning system offered by the government. The data were analysed descriptively and the findings show that the respondents of 22 flood victims believe strongly that the flash flood early warning system was confusing and dysfunctional, and communities had failed to response positively to it. Therefore, most of the communities were not well prepared for the releasing of water from the dam which caused property damage, and 3 people were killed in the Cameron Highland flash flood disaster.

Keywords: Communities affected, disaster management, early warning system, flash flood disaster.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2790
330 Two Day Ahead Short Term Load Forecasting Neural Network Based

Authors: Firas M. Tuaimah

Abstract:

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity.

The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Keywords: Short-Term Load Forecasting, Artificial Neural Networks, Back propagation learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
329 Forecasting US Dollar/Euro Exchange Rate with Genetic Fuzzy Predictor

Authors: R. Mechgoug, A. Titaouine

Abstract:

Fuzzy systems have been successfully used for exchange rate forecasting. However, fuzzy system is very confusing and complex to be designed by an expert, as there is a large set of parameters (fuzzy knowledge base) that must be selected, it is not a simple task to select the appropriate fuzzy knowledge base for an exchange rate forecasting. The researchers often look the effect of fuzzy knowledge base on the performances of fuzzy system forecasting. This paper proposes a genetic fuzzy predictor to forecast the future value of daily US Dollar/Euro exchange rate time’s series. A range of methodologies based on a set of fuzzy predictor’s which allow the forecasting of the same time series, but with a different fuzzy partition. Each fuzzy predictor is built from two stages, where each stage is performed by a real genetic algorithm.

Keywords: Foreign exchange rate, time series forecasting, Fuzzy System, and Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966