Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31181
Complexity Reduction Approach with Jacobi Iterative Method for Solving Composite Trapezoidal Algebraic Equations

Authors: Mohana Sundaram Muthuvalu, Jumat Sulaiman

Abstract:

In this paper, application of the complexity reduction approach based on half- and quarter-sweep iteration concepts with Jacobi iterative method for solving composite trapezoidal (CT) algebraic equations is discussed. The performances of the methods for CT algebraic equations are comparatively studied by their application in solving linear Fredholm integral equations of the second kind. Furthermore, computational complexity analysis and numerical results for three test problems are also included in order to verify performance of the methods.

Keywords: Jacobi method, Complexity reduction approach, Composite trapezoidal scheme, Linear Fredholm integral equations

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1088244

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309

References:


[1] A. R. Abdullah, “The four point Explicit Decoupled Group (EDG) method: A fast Poisson solver,” Int. J. Comput. Math., vol. 38, no. 1- 2, pp. 61-70, 1991.
[2] E. Babolian, H. R. Marzban, and M. Salmani,“Using triangular orthogonal functions for solving Fredholm integral equations of the second kind” Appl. Math. Comput., vol. 201, no. 1-2, pp. 452-464, 2008.
[3] Z. Chen, C. A. Micchelli, and Y. Xu,“Fast collocation methods for second kind integral equations” SIAM J. Numer. Anal., vol. 40, no. 1, pp. 344- 375, 2003.
[4] J. Dick, P. Kritzer, F. Y. Kuo, and I. H. Sloan,“Lattice-Nystr¨om method for Fredholm integral equations of the second kind with convolution type kernels” J. Complex., vol. 23, no. 4-6, pp. 752-772, 2007.
[5] A. Golbabai, and S. Seifollahi,“Numerical solution of the second kind integral equations using radial basis function networks,” Appl. Math. Comput., vol. 174, no. 2, pp. 877-883, 2006.
[6] A. Golbabai, and S. Seifollahi, “An iterative solution for the second kind integral equations using radial basis functions,” Appl. Math. Comput., vol. 181, no. 2, pp. 903-907, 2006.
[7] R. Kress, Numerical Analysis. New York: Springer-Verlag, 1998, ch. 12.
[8] K. Maleknejad, and M. T. Kajani, “Solving second kind integral equations by Galerkin methods with hybrid Legendre and Block-Pulse functions,” Appl. Math. Comput., vol. 145, no. 2-3, pp. 623-629, 2003.
[9] K. Maleknejad, and M. Karami, “Using the WPG method for solving integral equations of the second kind,” Appl. Math. Comput., vol. 166, no. 1, pp. 123-130, 2005.
[10] M. S. Muthuvalu, and J. Sulaiman, “Half-Sweep Arithmetic Mean method with composite trapezoidal scheme for solving linear Fredholm integral equations,” Appl. Math. Comput., vol. 217, no. 12, pp. 5442-5448, 2011.
[11] M. S. Muthuvalu, and J. Sulaiman, “Numerical solution of second kind linear Fredholm integral equations using QSGS iterative method with high-order Newton-Cotes quadrature schemes,” Malays. J. Math. Sci., vol. 5, no. 1, pp. 85-100, 2011.
[12] M. Othman, and A. R. Abdullah, “An efficient four points Modified Explicit Group Poisson solver,” Int. J. Comput. Math., vol. 76, no. 2, pp. 203-217, 2000.
[13] S. Rahbar, and E. Hashemizadeh, “A computational approach to the Fredholm integral equation of the second kind,” in Proc. World Congress on Engineering, London, 2008, pp. 933-937.
[14] J. Saberi-Nadjafi, and M. Heidari, “Solving linear integral equations of the second kind with repeated modified trapezoid quadrature method,” Appl. Math. Comput., vol. 189, no. 1, pp. 980-985, 2007.
[15] W. Wang, “A new mechanical algorithm for solving the second kind of Fredholm integral equation,” Appl. Math. Comput., vol. 172, no. 2, pp. 946-962, 2006.
[16] J. -Y. Xiao, L. -H. Wen, and D. Zhang, “Solving second kind Fredholm integral equations by periodic wavelet Galerkin method,” Appl. Math. Comput., vol. 175, no. 1, pp. 508-518, 2006.