**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31181

##### Complexity Reduction Approach with Jacobi Iterative Method for Solving Composite Trapezoidal Algebraic Equations

**Authors:**
Mohana Sundaram Muthuvalu,
Jumat Sulaiman

**Abstract:**

In this paper, application of the complexity reduction approach based on half- and quarter-sweep iteration concepts with Jacobi iterative method for solving composite trapezoidal (CT) algebraic equations is discussed. The performances of the methods for CT algebraic equations are comparatively studied by their application in solving linear Fredholm integral equations of the second kind. Furthermore, computational complexity analysis and numerical results for three test problems are also included in order to verify performance of the methods.

**Keywords:**
Jacobi method,
Complexity reduction approach,
Composite trapezoidal
scheme,
Linear Fredholm integral equations

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1088244

**References:**

[1] A. R. Abdullah, “The four point Explicit Decoupled Group (EDG)
method: A fast Poisson solver,” Int. J. Comput. Math., vol. 38, no. 1-
2, pp. 61-70, 1991.

[2] E. Babolian, H. R. Marzban, and M. Salmani,“Using triangular orthogonal
functions for solving Fredholm integral equations of the second kind”
Appl. Math. Comput., vol. 201, no. 1-2, pp. 452-464, 2008.

[3] Z. Chen, C. A. Micchelli, and Y. Xu,“Fast collocation methods for second
kind integral equations” SIAM J. Numer. Anal., vol. 40, no. 1, pp. 344-
375, 2003.

[4] J. Dick, P. Kritzer, F. Y. Kuo, and I. H. Sloan,“Lattice-Nystr¨om method
for Fredholm integral equations of the second kind with convolution type
kernels” J. Complex., vol. 23, no. 4-6, pp. 752-772, 2007.

[5] A. Golbabai, and S. Seifollahi,“Numerical solution of the second kind
integral equations using radial basis function networks,” Appl. Math.
Comput., vol. 174, no. 2, pp. 877-883, 2006.

[6] A. Golbabai, and S. Seifollahi, “An iterative solution for the second kind
integral equations using radial basis functions,” Appl. Math. Comput., vol.
181, no. 2, pp. 903-907, 2006.

[7] R. Kress, Numerical Analysis. New York: Springer-Verlag, 1998, ch. 12.

[8] K. Maleknejad, and M. T. Kajani, “Solving second kind integral equations
by Galerkin methods with hybrid Legendre and Block-Pulse functions,”
Appl. Math. Comput., vol. 145, no. 2-3, pp. 623-629, 2003.

[9] K. Maleknejad, and M. Karami, “Using the WPG method for solving
integral equations of the second kind,” Appl. Math. Comput., vol. 166,
no. 1, pp. 123-130, 2005.

[10] M. S. Muthuvalu, and J. Sulaiman, “Half-Sweep Arithmetic Mean
method with composite trapezoidal scheme for solving linear Fredholm
integral equations,” Appl. Math. Comput., vol. 217, no. 12, pp. 5442-5448,
2011.

[11] M. S. Muthuvalu, and J. Sulaiman, “Numerical solution of second kind
linear Fredholm integral equations using QSGS iterative method with
high-order Newton-Cotes quadrature schemes,” Malays. J. Math. Sci., vol.
5, no. 1, pp. 85-100, 2011.

[12] M. Othman, and A. R. Abdullah, “An efficient four points Modified
Explicit Group Poisson solver,” Int. J. Comput. Math., vol. 76, no. 2, pp.
203-217, 2000.

[13] S. Rahbar, and E. Hashemizadeh, “A computational approach to the
Fredholm integral equation of the second kind,” in Proc. World Congress
on Engineering, London, 2008, pp. 933-937.

[14] J. Saberi-Nadjafi, and M. Heidari, “Solving linear integral equations of
the second kind with repeated modified trapezoid quadrature method,”
Appl. Math. Comput., vol. 189, no. 1, pp. 980-985, 2007.

[15] W. Wang, “A new mechanical algorithm for solving the second kind of
Fredholm integral equation,” Appl. Math. Comput., vol. 172, no. 2, pp.
946-962, 2006.

[16] J. -Y. Xiao, L. -H. Wen, and D. Zhang, “Solving second kind Fredholm
integral equations by periodic wavelet Galerkin method,” Appl. Math.
Comput., vol. 175, no. 1, pp. 508-518, 2006.