Unsteady Laminar Boundary Layer Forced Flow in the Region of the Stagnation Point on a Stretching Flat Sheet
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Unsteady Laminar Boundary Layer Forced Flow in the Region of the Stagnation Point on a Stretching Flat Sheet

Authors: A. T. Eswara

Abstract:

This paper analyses the unsteady, two-dimensional stagnation point flow of an incompressible viscous fluid over a flat sheet when the flow is started impulsively from rest and at the same time, the sheet is suddenly stretched in its own plane with a velocity proportional to the distance from the stagnation point. The partial differential equations governing the laminar boundary layer forced convection flow are non-dimensionalised using semi-similar transformations and then solved numerically using an implicit finitedifference scheme known as the Keller-box method. Results pertaining to the flow and heat transfer characteristics are computed for all dimensionless time, uniformly valid in the whole spatial region without any numerical difficulties. Analytical solutions are also obtained for both small and large times, respectively representing the initial unsteady and final steady state flow and heat transfer. Numerical results indicate that the velocity ratio parameter is found to have a significant effect on skin friction and heat transfer rate at the surface. Furthermore, it is exposed that there is a smooth transition from the initial unsteady state flow (small time solution) to the final steady state (large time solution).

Keywords: Forced flow, Keller-box method, Stagnation point, Stretching flat sheet, Unsteady laminar boundary layer, Velocity ratio parameter.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1070669

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699

References:


[1] B.C. Sakiadis, "Boundary-layer behavior on continues solid surfaces: II. The boundary-layer on continuous flat surface," AIChE J. vol. 7, 1961, pp. 221-225.
[2] L. Crane, "Flow past a stretching plate". Z. Angew Math Phys (ZAMP), vol.21, 1970, pp.645-657.
[3] I. Vleggaar, "Laminar boundary layer behavior on continuous accelerating surfaces", Chem, Eng. Sci., vol. 32, 1977, pp.1517-1525.
[4] C. Y. Wang, "Exact solutions of the steady-state Navier-Stokes equations", Ann. Rev. Fluid Mech. vol.23, 1991, 159-177.
[5] J. F. Brady and A. Acrivos, "Steady flow in a channel or tube with an accelerating surface velocity: An exact solution to the Navier-Stokes equations with reverse flow", J. Fluid Mech. Vol.112, 1981, pp.127-150.
[6] W. H. H. Banks, "Similarity solutions of the boundary-layer equations for a stretching wall", J. Mec. Theoret. Appl. vol.2, 1983, pp.375-392.
[7] I Pop and T.Y. Na "Unsteady flow past a stretching sheet". Mech. Research Communications. vol.23, 1996, pp. 413-422.
[8] N. Nazar, N. Amin, I. Pop, "Unsteady boundary-layer flow due to a streching surface in a rotating fluid. Mech. Res. Commun.vol.31, 2004, pp. 413-422.
[9] C.Y.Wang, G.Du, M.Mikilavi and C.C.Chang, "Impulsive stretching of a surface in a viscous fluid-,SIAM J. Appl. Math., vol.57, 1997, pp.1-14.
[10] S. Awang Kechil and I. Hashim, "Series solution for unsteady boundary layer flows due to impulsively stretching plate". Chinese Physics Letters, vol.24, 2007, pp.139-142.
[11] J. C.Williams and Rhyne, "Boundary layer development on a wedge impulsively sent into motion. SIAM J. Appl.Math. vol. 38, 1980, pp. 215-224.
[12] H.B. Keller, "A new difference scheme for parabolic problems". In J.Bramble(Ed.). Numerical solutions of partial differential equations. vol II. Academic Press, New York, 1970.
[13] T. Cebeci and P.Bradshaw, "Physical and Computational aspects of Convective Heat Transfer, Springer, New York, 1988.
[14] T.C.Chiam, "Stagnation-point flow towards a stretching plate", J. Phys. Soc. Jpn.,vol.63,1994, pp.2443-2444.
[15] T.R.Mahapatra and A.S.Gupta, "Heat transfer in stagnation point flow towards a stretching sheet". Heat and Mass Transfer, vol.38, 2002, pp. 517-522.