Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32451
Material Defects Identification in Metal Ceramic Fixed Partial Dentures by En-Face Polarization Sensitive Optical Coherence Tomography

Authors: C. Sinescu, M. Negrutiu, R. Negru, M. Romînu, A.G. Podoleanu


The fixed partial dentures are mainly used in the frontal part of the dental arch because of their great esthetics. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The purpose of this study is to evaluate the capability of Polarization Sensitive Optical Coherence Tomography (PSOCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures. As a conclusion, it is important to have a non invasive method to investigate fixed partial prostheses before their insertion in the oral cavity in order to satisfy the high stress requirements and the esthetic function.

Keywords: Ceramic Fixed Partial Dentures, Material Defects, Polarization Sensitive Optical Coherence Tomography, Numerical Simulation

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708


[1] Bratu D., R. Nussbaum - Bazele clinice şi tehnice ale protezarii fixe, Editura Signata, 2001.
[2] Cosmin Sinescu, Meda Negrutiu, Carmen Todea, Adrian Gh. Podoleanu, Mike Huighes, Philippe Laissue, Cezar Clonda - Optical Coherecte Tomography as a non invasive method used in ceramic material defects identification in fixed partial dentures, Dental Target, nr. 5, year II, 2007.
[3] A. Gh. Podoleanu, J. A. Rogers, D. A. Jackson, S. Dunne, Three dimensional OCT images from retina and skin Opt. Express, Vol. 7, No. 9, p. 292-298, (2000),
[4] B. R. Masters, Three-dimensional confocal microscopy of the human optic nerve in vivo, Opt. Express, 3, 356-359 (1998),
[5] J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, Optical coherence microscopy in scattering media, Opt. Lett. 19, 590-593 (1994).
[6] C. C. Rosa, J. Rogers, and A. G. Podoleanu, Fast scanning transmissive delay line for optical coherence tomography, Opt. Lett. 30, 3263-3265 (2005).
[7] A. Gh.P odoleanu, G. M. Dobre, D. J. Webb, D. A. Jackson, Coherence imaging by use of a Newton rings sampling function, Optics Letters, 21(21), 1789, 1996.
[8] A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson and F. Fitzke, Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry, Journal of Biomedical Optics, 3, 12, 1998
[9] Cosmin Sinescu, Adrian Podoleanu, Meda Negrutiu, Mihai Romînu - Optical coherent tomography investigation on apical region of dental roots, European Cells & Materials Journal, Vol. 13, Suppl. 3, 2007, p.14, ISSN 1473-2262.
[10] C Sinescu, A Podoleanu, M Negrutiu, C Todea, D Dodenciu, M Rominu, Material defects investigation in fixed partial dentures using optical coherence tomography method, European Cells and Materials Vol. 14. Suppl. 3, ISSN 1473-2262, 2007.
[11] Roxana Romînu, C Sinescu, A Podoleanu, M Negrutiu, M Rominu, A Soicu, C Sinescu, The quality of bracket bonding studied by means of oct investigation. A preliminary study, European Cells and Materials Vol. 14. Suppl. 3, ISSN 1473-2262, 2007.
[12] Cosmin Sinescu, Meda Lavinia Negrutiu, Carmen Todea, Cosmin Balabuc, Laura Filip, and Roxana Rominu, Adrian Bradu, Michael Hughes, and Adrian Gh. Podoleanu, Quality assessment of dental treatments using enface optical coherence tomography, J. Biomed. Opt., Vol. 13, 054065 (2008).
[13] F. Erdogan, G.C. Sih : On the crack extension in plates under plane loading and transverse shear, J Basic Engineering vol. 85, 4, (1963).
[14] Wawrzynek P.A., Ingraffea A. R.: Discrete modeling of crack propagation: theoretical aspects and implementation issues in two and three dimensions. Cornell University, Ithaca, NY, (1991).