Precision Identification of Nonlinear Damping Parameter for a Miniature Moving-Coil Transducer
Authors: Yu-Ting Tsai, Yu-da Lee, Jin H. Huang
Abstract:
The nonlinear damping behavior is usually ignored in the design of a miniature moving-coil loudspeaker. But when the loudspeaker operated in air, the damping parameter varies with the voice-coil displacement corresponding due to viscous air flow. The present paper presents an identification model as inverse problem to identify the nonlinear damping parameter in the lumped parameter model for the loudspeaker. Theoretical results for the nonlinear damping are verified by using laser displacement measurement scanner. These results indicate that the damping parameter has the greatly different nonlinearity between in air and vacuum. It is believed that the results of the present work can be applied in diagnosis and sound quality improvement of a miniature loudspeaker.
Keywords: Miniature loudspeaker, non-linear damping, system identification, Lumped parameter model.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087205
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984References:
[1] L. L. Beranek, Acoustics, Acoustical Society of America, New York,
1993,( Original work published by McGraw-Hill, New York, 1954),
Chap. 3, pp. 47–77.
[2] B. Merit, V. Lemarquand, G. Lemarquand, A. Dobrucki, “Motor
Nonlinearities in Electrodynamic Loudspeakers Modeling and
Measurement,” Arch. Acoust., vol. 34, no. 4, pp. 407-418, 2009.
[3] S. J. Pawar, Soar Weng, Jin H. Huang, “Total harmonic distortion
improvement for elliptical miniature loudspeaker based on suspension
stiffness nonlinearity,” IEEE Transactions on Consumer Electronics, vol.
58, pp. 221-227, 2012.
[4] R. J. Mihelich, “Loudspeaker nonlinear parameter estimation: an
optimization method,” Presented at the 111th AES convention, New
York, 2001, No. 5419.
[5] E. Geddes, A. Phillips, “Efficient Loudspeaker Linear and Nonlinear
Parameter Estimation,” in: 91th Audio Engineering Society convention,
New York, 1991, no. 3164 (S-4).
[6] D. Clark, “Precision Measurement of Loudspeaker Parameters,” J. Audio
Eng. Soc., vol.45, no. 3, pp. 129 -140, 1997.
[7] R. J. Mihelich, “Loudspeaker Nonlinear Parameter Estimation: An
Optimization Method,” in: 111th Audio Engineering Society convention,
New York, 2001, no. 5419.
[8] W. Klippel, “Dynamic Measurement and Interpretation of the Nonlinear
Parameters of Electrodyncamic Loudspeakers,” J. Audio Eng. Soc., vol.
38, no. 12, pp. 944-955, 1990.
[9] A. J. M. Kaizer, “Modeling of the Nonlinear Response of an
Electrodynamic Loudspeaker by a Volterra Series Expansion,” J. Audio
Eng. Soc., vol. 35, no. 6, pp. 421-433, 1987.
[10] W. Klippel, “Nonlinear Damping in Micro-Speakers,” Specifications to
the KLIPPEL R&D system,
http://www.klippel.de/know-how/literature/papers.html.
[11] M. H. Knudsen, J. Grue Jensen, V. Julskjaer, and P. Rubak,
“Determination of loudspeaker driver parameters using a system
identification technique,” J. Audio Eng. Soc., vol. 37, pp. 700–708, 1989.
[12] D. Clark, “Precision measurement of loudspeaker parameters,” J. Audio
Eng. Soc., vol. 45, pp. 129–140, 1997.
[13] W. Klippel, “Fast and Accurate Measurement of the Linear Transducer
Parameters,” Presented at the 110th AES convention, Germany, 2001,
PN. 5308.
[14] B. R. Pedersen, and P. Rubak, “Online identification of linear
loudspeakers parameters,” Presented at the 122nd AES convention,
Vienna, Austria, 2007, PN. 7060.
[15] M. Ureda, “Determination of Thiele-Small Parameters of a Loudspeaker
Using Nonlinear Goal Programming,” Presented at the 72th AES
convention, Anaheim, 1982, PN. 1953(C-2).
[16] A. A. Freschi, N. R. Caetano, G. A. Santarine, and R. Hessel, “Laser
interferometric characterization of a vibrating speaker system,” Am. J.
Phys., vol. 71, pp. 1121-1126, 2003.
[17] W. Geiger, “Servo control of loudspeaker cone motion using an optical
linear displacement sensor,” J. Audio Eng. Soc., vol. 53, pp. 518–524,
2005.
[18] C. H. Huang, “A nonlinear inverse vibration problem of estimating the
time-dependent stiffness coefficients by conjugate gradient method,“ Int.
J. Numer. Methods Eng., vol. 50, pp. 1545–1558, 2001.
[19] C. C. Wang, J. H. Huang, D. J. Yang, “Cubic spline difference method for
heat conduction,” Int. Commun. Heat Mass Transf., vol. 39, pp. 224–230,
2012.
[20] C. C. Wang, L. P. Chao, W. J. Liao, “Hybrid spline difference method
(hsdm) for transient heat conduction,” Numer. Heat Tr. B-Fund., vol. 61,
pp. 129–146, 2012.