**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30075

##### Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

**Authors:**
M. Seguini,
D. Nedjar

**Abstract:**

**Keywords:**
Finite element method,
geometric nonlinearity,
material nonlinearity,
soil-structure interaction,
spatial variability.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1339099

**References:**

[1] Hetenyi, Beams on elastic foundations. Ann Arbor, MI: University of Michigan Press, USA, 1961.

[2] S. Timoshenko, Strength of Materials, Part II, Advanced Theory and Problems. 3rd ed., Princeton, NJ: Van Nostrand, USA, 1956.

[3] S. Motohiro, K. Shunji and M. Takashi, “Structural modeling of beams on elastic foundations with elasticity couplings,” Mechanics Research Communications, vol. 34, no. 5-6, pp. 451-459, 2007.

[4] C. Miranda and K. Nair, “Finite beams on elastic foundation,” ASCE Journal of Structure Division, vol. 92, no. ST2, Paper 4778, pp. 131-142, 1966.

[5] M. Eisenberger and J. Clastornik, “Beams on variable two-parameter elastic foundation,” Journal of Engineering Mechanics, vol. 113, no. 10, pp. 1454-1466, 1987.

[6] B. Y. Ting and E. F. Mockry, “Beam on elastic foundation finite elements,” Journal of Structural Engineering, vol. 110, no. 10, pp. 2324-2339, 1984.

[7] E. Winkler,” Die Lehre von der Elasticitaet und Festigkeit (The theory of elasticity and strength),” Dominicus: Prag, 1867.

[8] M. Eisenberger and D. Z. Yankelevsky, “Exact stiffness matrix for beams on elastic foundation,” Computers and Structures, vol. 21, no. 6, pp. 1355-1359, 1985.

[9] D. Z. Yankelevsky, M. Eisenberger and M. A. Adin, “Analysis of beams on nonlinear Winkler foundation,” Computers and Structures, vol. 31, no. 2, pp. 287-292, 1989.

[10] J. P. Beaufait and W. Hoadley, “Analysis of elastic beams on nonlinear foundations,” Computers and Structures, vol. 12, no. 5, pp. 669-676, 1980.

[11] C. W. Harden and T. C. Hutchinson, “Beam on nonlinear Winkler foundation modeling of shallow rocking-dominated footings,” Earthquake Spectra, vol. 25, no. 2, pp. 277-300, 2009.

[12] S. P. Sharma and S. Dasgupta, “The bending problem of axially constrained beams on nonlinear elastic foundations,” International Journal of Solids and Structures, vol. 11, pp. 853-889, 1975.

[13] T. M. Wang and L. W. Gagnon, “Vibrations of continuous Timoshenko beams on Winkler-Pasternak foundations,” Journal of Sound and Vibration, vol. 59, no. 2, pp. 211-220, 1978.

[14] F. Fırat Çalım, “Dynamic analysis of beams on viscoelastic foundation,” European Journal of Mechanics-A/Solids, vol. 28, no. 3, pp. 469-476, 2009.

[15] C. Bridge and N. Willis, “Steel catenary risers results and conclusions from large-scale simulations of seabed interactions,” Proceedings of the International Conference on Deep Offshore Technology, New Orleans, Louisiana, (2002).

[16] C. Bridge, K. Laver, E. Clukey and T. Evans, “Steel catenary riser touchdown point vertical interaction models,” Proceedings of the Conference on Offshore Technology, Houston, Texas, 2004.

[17] M. S. Hodder and B. W. Byrne, “3D experiments investigating the interaction of a model SCR with the seabed,” Applied Ocean Research, vol. 32, no. 2, pp. 146–157, 2010.

[18] K. J. Bathe, “Finite element procedures in engineering analysis,” Englewood Cliffs, NJ: Prentice-Hall, 1982.

[19] J. N. Reddy, “An introduction to nonlinear finite element analysis,” Oxford University Press, 2004.

[20] S. A. Hosseini Kordkheili and H. Bahai, “Non-linear finite element analysis of flexible risers in presence of buoyancy force and seabed interaction boundary condition,” Archive of Applied Mechanics, vol. 78, no. 10, pp. 765–774, 2008.

[21] S. A. Hosseini Kordkheili, H. Bahai and M. Mirtaheri, “An updated Lagrangian finite element formulation for large displacement dynamic analysis of three-dimensional flexible riser structures,” Ocean Engineering, vol. 38, no. 5-6, pp. 793-803, 2011.

[22] T. Horibe, “An analysis for large deflection problems of beams on elastic foundations by boundary integral equation method,” Transaction of Japan Society of Mechanical Engineers (JSME)-Part A, vol. 53, no. 487, pp. 622-629, 1987.

[23] T. S. Jang, H. S. Baek and J. K. Paik, “A new method for the nonlinear deflection analysis of an infinite beam resting on a nonlinear elastic foundation,” International Journal of Non-Linear Mechanics, vol. 46, no. 1, pp. 339–346, 2011.

[24] T. S. Jang, “A new semi-analytical approach to large deflections of Bernoulli–Euler-v. Karman beams on a linear elastic foundation: Nonlinear analysis of infinite beams,” International Journal of Mechanical Sciences, vol. 66, pp. 22–32, 2013.

[25] T. S. Jang, “A general method for analysing moderately large deflections of a non-uniform beam: an infinite Bernoulli–Euler–von Kármán beam on a nonlinear elastic foundation,” Acta Mechanica, vol. 225, no. 7, pp. 1967-1984, 2014.

[26] A. A. Al- Azzawi, H. Mahdy and O. Sh. Farhan, “Finite element analysis of deep beams on nonlinear elastic foundations,” Journal of the Serbian Society for Computational Mechanics, vol. 4, no. 2, pp. 13-42, 2010.

[27] D. M. Al-Talaqany, “Large Deflection Deep Beams on Elastic Foundations,” M.Sc.Thesis, Faculty of Engineering, Nahrain University of Baghdad, Iraq, 2007.

[28] A. A. Al- Azzawi and D. M. Theeban, “Large deflection of deep beams on Elastic Foundations,” Journal of the Serbian Society for Computational Mechanics, vol. 4 no. 1, pp. 88-101, 2010.

[29] D. V. Griffiths, J. Paiboon, J. Huang, G. A. Fenton, “Numerical analysis of beams on random elastic foundations,” In: Proceedings of the 9th international congress on numerical methods in engineering and scientific applications, CIMENICS, pp. 19–25, 2008.

[30] S. M. Elachachi, D. Breysse and L. Houy, “Longitudinal variability of soils and structural response of sewer networks,” Computers and Geotechnics, vol. 31, no. 8, pp. 625–641, 2004.

[31] E. VanMarcke, “Random fields: Analysis and synthesis,” Cambridge, MA: MIT Press, 1983.

[32] D. Nedjar, M. Bensafi, S. M. Elachachi, M. Hamane and D. Breysse, “Buried pipe response under seismic solicitation with soil–pipe interaction,” In Mestat (Ed.), NUMGE conference Paris: ENPC/ LCPC, pp. 1047–1053, 2002.

[33] D. Nedjar, M. Hamane, M. Bensafi, S. M. Elachachi and D. Breysse, “Seismic response analysis of pipes by a probabilistic approach,” Soil Dynamics and Earthquake Engineering, vol. 27, no. 2, pp. 111–115, 2007.

[34] S. M. Elachachi, D. Breysse and H. Benzeguir, “Soil spatial variability and structural reliability of buried networks subjected to earthquakes”, Computational Methods in Applied Sciences, vol. 22, pp. 111–127, 2011.

[35] S. M. Elachachi, D. Breysse and A. Denis, “Effect of soil spatial variability on reliability of rigid buried pipes,” Computers and Geotechnics, vol. 43, pp. 61–71, 2012.

[36] N. Kazi Tani, D. Nedjar and M. Hamane, “Non-linear analysis of the behaviour of buried structures in random media,” European Journal of Environmental and Civil Engineering, vol. 17, no. 9, pp. 791-801, 2013.

[37] G. A. Fenton and E. H. VanMarcke, “Simulation of random fields via local average subdivision,” Journal of Engineering Mechanics, vol. 116, no. 8, pp.733–1749, 1990.