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Abstract—In this paper we consider a nonlinear feedback control
called augmented automatic choosing control (AACC) for nonlinear
systems with constrained input using weighted gradient optimization
automatic choosing functions. Constant term which arises from
linearization of a given nonlinear system is treated as a coefficient of
a stable zero dynamics. Parameters of the control are suboptimally
selected by maximizing the stable region in the sense of Lyapunov
with the aid of a genetic algorithm. This approach is applied to a
field excitation control problem of power system to demonstrate the
splendidness of the AACC. Simulation results show that the new
controller can improve performance remarkably well.

control, genetic algorithm, zero dynamics.

I. INTRODUCTION

IT is generally easy to design the optimal control laws for
linear systems, but it is not so for nonlinear systems, though

they have been studied for many years[1]-[8]. One of the most
popular and practical nonlinear control laws is synthesized by
applying the linearization method by Taylor expansion and the
linear optimal control method to a given nonlinear system.
This is only effective in a small region around the steady state
point or in almost linear systems[1]-[3].

Another nonlinear control called an automatic choosing
control (ACC) has been studied [6]. This controller is effective
in nonlinear systems with high nonlinearity and wider regions.
But constant terms, which generally appear in equations when
linearized by Taylor expansion, lead the controller to have
bias at the origin, so the resulting ACC must be modified by
bothersome unbiased nonlinear functions in view of stability.

Moreover, there exist various constraints in many physical
systems, so a design of nonlinear control laws subject to
constraints has been urgent but been studied a few[9].

In this paper we present an augmented automatic choosing
control (AACC) for nonlinear systems with constrained input
by using a genetic algorithm(GA)[10] and its design procedure
is as follows. Assume that a system is given by a nonlinear
differential equation. Choose a separative variable, which
makes up nonlinearity of the given system. The domain of the
variable is divided into some subdomains. On each subdomain,
the system equation is linearized by Taylor expansion around
a suitable point so that a constant term is included in it.
This constant term is treated as a coefficient of a stable zero
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dynamics. The given nonlinear system approximately makes
up a set of augmented linear systems, to which the optimal
linear control theory is applied to get the linear quadratic
(LQ) controls[2]. These LQ controls are smoothly united by
weighted gradient optimization automatic choosing functions
to synthesize a single nonlinear feedback controller. This
controller is then limited so as to hold a specified constraint.

This controller is of a structure-specified type which
has some parameters, such as the number of division of
the domain, regions of the subdomains, points of Taylor
expansion, gradients of the automatic choosing function, and
weights of the automatic choosing function. These parameters
must be selected optimally so as to be just the controller’s
fit. Since they lead to a nonlinear optimization problem, we
are able to solve it by using the GA suboptimally. In this
paper the suboptimal values of these parameters are selected
by maximizing a stable region in the sense of Lyapunov.

This approach is applied to a field excitation control
problem of power system, which is Ozeki-Power-Plant of
Kyushu Electric Power Company in Japan, to demonstrate the
splendidness of the AACC. Simulation results show that the
new controller using the GA is able to improve performance
remarkably well.

II. AUGMENTED AUTOMATIC CHOOSING CONTROL USING

ZERO DYNAMICS

Assume that a nonlinear system is given by

ẋ = f(x) + g(x)u, x ∈ D (1)

subject to

uj,min ≤ u[j] ≤ uj,max (j = 1, · · · , r) (2)

where · = d/dt, x = [x[1], · · · , x[n]]T is an
n-dimensional state vector, u = [u[1], · · · , u[j], · · · , u[r]]T
is an r-dimensional bounded control vector, uj,min : the
minimum value of u[j], uj,max : the maximum value of
u[j], f : D → Rn is a nonlinear vector-valued function
with f(0) = 0 and is continuously differentiable, g(x) is
an n × r driving matrix with g(0) �= 0 and is continuously
differentiable, D ⊂ Rn is a domain , and T denotes transpose.

Considering the nonlinearity of f , introduce a vector-valued
function C : D → RL which defines the separative variables
{Cj(x)}, where C = [C1 · · ·Cj · · ·CL]

T is continuously
differentiable. Let D be a domain of C−1. For example, if
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x[2] is the element which has the highest nonlinearity in f ,
then

C(x) = x[2] ∈ D ⊂ R (L = 1)

(see Section IV). The domain D is divided into some
subdomains: D = ∪M

i=0Di, where DM = D − ∪M−1
i=0 Di and

C−1(D0) � 0. Di(0 ≤ i ≤ M) endowed with a lexicographic
order is the Cartesian product Di = ΠL

j=1[aij , bij ], where
aij < bij .

Introduce a stable zero dynamics :

ẋ[n+ 1] = −σix[n+ 1] (3)

(x[n+ 1](0) 	 1, 0 < σi < 1).

Equation(1) combines with (3) to form an augmented
system

Ẋ = f̄(X) + ḡ(X)u (4)

where

X =

[
x

x[n+ 1]

]
∈ D×R

f̄(X) =

[
f(x)

−σix[n+ 1]

]
, ḡ(X) =

[
g(x)
0

]
.

We assume a cost function being

J =
1

2

∫ ∞

0

(
XTQX+ uTRu

)
dt (5)

where Q = QT > 0, R = RT > 0, and the values of
these matrices are properly determined based on engineering
experience.

On each Di, the nonlinear system is linearized by the
Taylor expansion truncated at the first order about a point
X̂i ∈ C−1(Di) and X̂0 = 0 (see Fig. 1):

f(x) + g(x)u 	 Aix+ wi +Biu on C−1(Di) (6)

where

Ai = ∂f(x)/∂xT |x=X̂i
, wi = f(X̂i)−AiX̂i ,

Bi = g(X̂i).

Make an approximation of (4) by

Ẋ = ĀiX+ B̄iu on C−1(Di)×R (7)

where

Āi =

[
Ai wi

0 −σi

]
, B̄i =

[
Bi

0

]
.

An application of the linear optimal control theory[2] to (5)
and (7) yields

ui(X) = −R−1B̄T
i PiX (8)

where the (n + 1) × (n + 1) matrix Pi satisfies the Riccati
equation :

PiĀi + ĀT
i Pi +Q−PiB̄iR

−1B̄T
i Pi = 0. (9)

Introduce a gradient optimization automatic choosing
function of sigmoid type with weight di:

Ii(x) = di

L∏
j=1

{
1− 1

1 + exp (2N1i (Cj(x)− aij))

− 1

1 + exp (−2N1i (Cj(x)− bij))

}
(10)

where N1i:positive real value, −∞ ≤ aij , bij ≤ ∞. Ii(x)
is analytic and almost unity on C−1(Di), otherwise almost
zero when di = 1 (see Fig. 2).

Expansion
point

D0 DM

f(x)

xX0 XM
^

D1

^X̂1

f(x)

A1x+w1

AMx+wMA0x

0

Fig. 1 Sectionwize linearization

aij bij aij bij

N1i=3.0 N1i=6.00.5

1

Fig. 2 Automatic Choosing Function(N1i=3.0, 6.0)

Uniting {ui(X)} of (8) with {Ii(x)} of (10) yields

û(X) = [û(X)[1], · · · , û(X)[j], · · · , û(X)[r]]T

=

M∑
i=0

ui(X)Ii(x).

We finally have an augmented automatic choosing control
which is satisfied with the constraint condition (2) by

u(X) = [u(X)[1], · · · , u(X)[j], · · · , u(X)[r]]T (11)

where

u(X)[j] =

⎧⎪⎪⎨
⎪⎪⎩

uj,max if û(X)[j] ≥ uj,max

uj,min if û(X)[j] ≤ uj,min

û(X)[j] otherwise

(1 ≤ j ≤ r).
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III. PARAMETER SELECTION BY GA

Introduce a Lyapunov function candidate:
V (X) = XTΠ(X)X (12)

where
Π(X) =

M∑
i=0

PiΠi(x) ,

Πi(x) = ηi

L∏
j=1

{
1− 1

1 + exp (2N2 (Cj(x)− aij))

− 1

1 + exp (−2N2 (Cj(x)− bij))

}
(13)

where Pi satisfies the Riccati equation (9). N2 and ηi are
positive real values. By the Lyapunov’s direct method, the
equilibrium point 0 is uniformly stable on a connected set:

DV =
{
x ∈ D : V (X) < γ, V̇ (X) < 0

}
where

γ = inf
{
V (X) : X �= 0, V̇ (X) = 0

}
.

In order to make a stable region in the sense of Lyapunov as
wide as possible, we define a performance

PI = −γ. (14)

A set of parameters included in the control of (11) is

Ω̄ = {M,N1i, di, aij , bij , · · ·} (15)

which is suboptimally selected by minimizing PI with the aid
of GA[10] as follows.

<ALGORITHM>
step1:Apriori: Set values Ω̄apriori appropriately.
step2:Parameter: Choose Ω ⊂ Ω̄ to be improved

and rewrite

Ω = {N1i, di, ai, bi, · · ·} = {αk : k = 1, ··,K}.
step3:Coding:Represent each αk with a binary bit

string of L̃ bits and then arrange them into one
string of L̃K bits.

step4:Initialization:Randomly generate an initial
population of q̃ strings

{Ωp : p = 1, ··, q̃}.
step5:Decoding:Decode each element αk of Ωp by

αk = (αk,max − αk,min)Ak/(2
L̃ − 1) + αk,min

where αk,max:maximum, αk,min:minimum, and
Ak:decimal values of αk.

step6:Lyapunov function: Make γ = γp (p = 1, ··
,q̃) for Ωp by using (12).

step7:Fitness value calculation:Calculate

PIp = −γp

by (14), or fitness Fp = −PIp.
step8:Reproduction: Reproduce each of individual

strings with the probability of

Fp/
∑q̃

j=1 Fj .

step9:Crossover:Pick up two strings and exchange
them at a crossing position by a crossover
probability Pc.

step10:Mutation:Alter a bit of string (0 or1)
by a mutation probability Pm.

step11:Repetition:Repeat step5∼step10 until
prespecified G-th generation. If unsatisfied,
go to step2.

As a result, we have a suboptimal control u(X) for the
string with the best performance over all the past generations.

Fig. 3 Diagram of Ozeki-Power-Plant

IV. NUMERICAL EXAMPLE

Consider a field excitation control problem of power system.
Fig. 3 is a diagram of Ozeki-Power-Plant of Kyushu Electric
Power Company in Japan. This system is assumed to be
described[7] by

M̃
d2δ

dt2
+ D̃

dδ

dt
+ Pe = Pin

Pe = E2
IY11 cos θ11 + EI Ṽ Y12 cos(θ12 − δ)

EI + T ′
d0

dE′
q

dt
= Efd

EI = E′
q + (Xd −X ′

d)Id

Id = −EIY11 sin θ11 − Ṽ Y12 sin(θ12 − δ)

D̃ = Ṽ 2
{T ′′

d0(X
′
d −X ′′

d )

(X ′
d +Xe)2

sin2 δ

+
T ′′
q0(Xq −X ′′

q )

(Xq +Xe)2
cos2 δ

}
,

where δ: phase angle, δ̇: rotor speed, M̃ : inertia coefficient,
D̃(δ): damping coefficient, Pin: mechanical input power,
Pe(δ): generator output power, Ṽ : reference bus voltage,
EI : open circuit voltage, Efd: field excitation voltage, Xd:
direct axis synchronous reactance, X ′

d: direct axis transient
reactance, Xe: external impedance, Y11 � θ11: self-admittance
of the network, Y12 � θ12: mutual admittance of the network,
and Id(δ): direct axis current of the machine. Put
x=[x[1], x[2], x[3]]T =[EI−ÊI , δ− δ̂0, δ̇]

T and u = Efd−Êfd,
so that ⎡

⎣ ẋ[1]
ẋ[2]
ẋ[3]

⎤
⎦ =

⎡
⎣ f1(x)

f2(x)
f3(x)

⎤
⎦+

⎡
⎣ g1(x)

0
0

⎤
⎦u (16)
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where

f1(x) = − 1

kTd0
(x[1] + ÊI − Êfd)

+
(Xd −X ′

d)Ṽ Y12

k
X3 cos(θ12 − x[2]− δ̂0)

f2(x) = x[3]

f3(x) = − Ṽ Y12

M̃
(x[1] + ÊI) cos(θ12 − x[2]− δ̂0)

−Y11 cos θ11

M̃
(x[1] + ÊI)

2 − D̃

M̃
x[3] +

P0

M̃

g1(x) =
1

kTd0
, k = 1 + (Xd −X ′

d)Y11 sin θ11.

Parameters are

M̃ = 0.016095[pu] Td0 = 5.09907[sec]

Ṽ = 1.0[pu] P0 = 1.2[pu]
Xd = 0.875[pu] X ′

d = 0.422[pu]
Y11 = 1.04276[pu] Y12 = 1.03084[pu]
θ11 = −1.56495[pu] θ12 = 1.56189[pu]
Xe = 1.15[pu] X ′′

d = 0.238[pu]
Xq = 0.6[pu] X ′′

q = 0.3[pu]
T ′′
d0 = 0.0299[pu] T ′′

q0 = 0.02616[pu]

ÊI = 1.52243[pu] δ̂0 = 48.57◦
ˆ̇
δ0 = 0.0[deg/sec] Êfd = 1.52243[pu].

Set X = [xT , x[4]]T = [x[1], x[2], x[3], x[4]]T , n = 3,
X̂0 = δ̂0 = 48.57◦, d0 = 1, C(x)=x[2], L = 1,
Q=diag(1, 1, 1, 1),R=1,σi = 0.33294(0≤i≤M) and x[4](0)=
1. Experiments are carried out for the new control(AACC), and
the ordinary linear optimal control(LOC)[2].

1) AACC(New,umax=5):
M=1, X̂1 = 80◦, D0 = (−∞, a − δ̂0], D1=[a −
δ̂0,∞). The parameters are suboptimally selected along
the algorithm of section III. Ω={ηi, N1i, N2, d1, a},G=100,
q̃=100, L̃=8, Pc=0.8, Pm=0.03. The constrained input value
is umax = −umin = 5. It results that ηi=3.258824,
N10=7.592941, N11=3.710588, N2=3.258824, d1=0.332941
and a=59.705882◦.

2) AACC(New,umax=10):
The parameters are suboptimally selected by using the same
way of the AACC(New,umax=5). The constrained input value
is umax = −umin = 10. It results that ηi=2.692941,
N10=8.408235, N11=5.923529, N2=5.270588, d1=0.333529
and a=66.470588◦.

3) AACC(Old,umax=5):
The parameters are suboptimally selected by using the
same way of the AACC(New,umax=5) which uses the
fixed weight of the gradient optimization automatic
choosing function[8]. Ω={ηi, N1i, N2, a}. It results that
ηi=0.372941, N10=7.360000, N11=3.865882, N2=5.588235
and a=60.784314◦.

4) AACC(Old,umax=10):
The parameters are suboptimally selected by using the
same way of the AACC(Old,umax=5). The constrained

input value is umax = −umin = 10. It results that
ηi=2.931765, N10=2.118824, N11=0.488235, N2=6.541176
and a=63.039216◦.

Table I shows performances by the AACC(New), the

AACC(Old) and the LOC. The cost function of Table I is

J̃ =
1

2

∫ 20

0

(
XTQX+ uTRu

)
dt.
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Fig. 4 Responses of LOC, AACC(Old), AACC(New)
(xT (0) = [0, 1.0, 0])
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Fig. 5 Responses of LOC, AACC(Old), AACC(New)
(xT (0) = [0, 1.0, 0])
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Fig. 6 Responses of LOC, AACC(Old), AACC(New)
(xT (0) = [0, 1.0, 0])
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TABLE I
PERFORMANCES

xT(0) : initial point
Method [0, 0.4, 0] [0, 1.0, 0] [0, 1.2, 0] [0, 1.3, 0] [0, 1.377, 0]

LOC 0.95375 × × × ×
umax=5 AACC(Old) 0.92449 1.94488 1.91524 × ×

AACC(New) 0.99706 2.68654 2.25723 1.91616 2.62815
LOC 0.95375 × × × ×

umax=10 AACC(Old) 0.92527 1.96434 1.88441 2.24908 ×
AACC(New) 0.95353 2.60857 2.35065 2.00983 2.73808

× : very large value

t(sec)

u[
pu

] :
 fi

el
d 

ex
ci

ta
tio

n 
vo
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ge

AACC(New,umax=5)
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Fig. 7 Responses of LOC, AACC(Old), AACC(New)
(xT (0) = [0, 1.0, 0])
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Fig. 8 Responses of AACC(Old), AACC(New)
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Fig. 9 Responses of AACC(Old), AACC(New)
(xT (0) = [0, 1.3, 0])
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Fig. 10 Responses of AACC(Old), AACC(New)
(xT (0) = [0, 1.3, 0])
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Fig. 11 Responses of AACC(Old), AACC(New)
(xT (0) = [0, 1.3, 0])
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Fig. 12 Responses of AACC(Old), AACC(New)
(xT (0) = [0, 1.377, 0])
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Fig. 13 Responses of AACC(Old), AACC(New)
(xT (0) = [0, 1.377, 0])
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Fig. 14 Responses of AACC(Old), AACC(New)
(xT (0) = [0, 1.377, 0])
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Fig. 15 Responses of AACC(Old), AACC(New)
(xT (0) = [0, 1.377, 0])

Figs. 4, 5, 6 and 7 show the responses in case of xT (0) =
[0, 1.0, 0]. Figs. 8, 9, 10 and 11 show the responses in case of
xT (0) = [0, 1.3, 0]. Figs. 12, 13, 14 and 15 show the responses
in case of xT (0) = [0, 1.377, 0]. These results indicate that the
stable region of AACC(New) is better than the AACC(Old)
and LOC.

V. CONCLUSIONS

We have studied an augmented automatic choosing control
with constrained input designed by Lyapunov functions
using the weighted gradient optimization automatic choosing
functions for nonlinear systems. This approach was applied
to a field excitation control problem of power system to
demonstrate the splendidness of the AACC. Simulation results
have shown that this controller could improve performance
remarkably well.
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