Search results for: mechanical tests
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2337

Search results for: mechanical tests

2307 Influence of Bentonite Additive on Bitumen and Asphalt Mixture Properties

Authors: Ziari Hassan, Divandari Hassan, Babagoli Rezvan, Akbari Ali

Abstract:

Asphalt surfaces are exposed to various weather conditions and dynamic loading caused by passing trucks and vehicles. In such situations, asphalt cement shows so different rheological-mechanical behavior. If asphalt cement isn-t compatible enough, asphalt layer will be damaged immediately and expensive repairing procedures should be performed then. To overcome this problem, researchers study on mechanical improved asphalt cement. In this study, bentonite was used in order to modify bitumen characteristics and the modified bitumen's characteristics were investigated by asphalt cement tests. Then, the optimal bitumen content in various compounds was determined and asphalt samples with different contents of additives were prepared and tested. Results show using this kind of additive not only has caused improvement in bitumen mechanical properties, but also improvement in Marshall Parameters was achieved.

Keywords: Asphalt mixture, Bentonite, Modified bitumen, Performance characteristics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3839
2306 A Brief Study about Nonparametric Adherence Tests

Authors: Vinicius R. Domingues, Luan C. S. M. Ozelim

Abstract:

The statistical study has become indispensable for various fields of knowledge. Not any different, in Geotechnics the study of probabilistic and statistical methods has gained power considering its use in characterizing the uncertainties inherent in soil properties. One of the situations where engineers are constantly faced is the definition of a probability distribution that represents significantly the sampled data. To be able to discard bad distributions, goodness-of-fit tests are necessary. In this paper, three non-parametric goodness-of-fit tests are applied to a data set computationally generated to test the goodness-of-fit of them to a series of known distributions. It is shown that the use of normal distribution does not always provide satisfactory results regarding physical and behavioral representation of the modeled parameters.

Keywords: Kolmogorov-Smirnov, Anderson-Darling, Cramer-Von-Mises, Nonparametric adherence tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
2305 Comparison and Characterization of Dyneema™ HB-210 and HB-212 for Accelerated UV Aging

Authors: Jonmichael A. Weaver, David A. Miller

Abstract:

Ultra High Molecular Weight Polyethylene (UHMWPE) presents several distinct advantages as a material with a high strength to weight ratio, durability, and neutron stability. Understanding the change in the mechanical performance of UHMWPE due to environmental exposure is key to safety for future applications. Dyneema® HB-210, a 15 µm diameter UHMWPE multi-filament fiber laid up in a polyurethane matrix in [0/ 90]2, with a thickness of 0.17 mm is compared to the same fiber and orientation system, HB-212, with a rubber-based matrix under UV aging conditions. UV aging tests according to ASTM-G154 were performed on both HB-210 and HB-212 to interrogate the change in mechanical properties, as measured through dynamic mechanical analysis and imaged using a scanning electron microscope. These results showed a decrease in both the storage modulus and loss modulus of the aged material compared to the unaged, even though the tan δ slightly increased. Material degradation occurred at a higher rate in Dyneema® HB-212 compared to HB-210. The HB-210 was characterized for the effects of 100 hours of UV aging via dynamic mechanical analysis. Scanning electron microscope images were taken of the HB-210 and HB-212 to identify the primary damage mechanisms in the matrix. Embrittlement and matrix spall were the products of prolonged UV exposure and erosion, resulting in decreased mechanical properties.

Keywords: Composite materials, material characterization, UV aging, UHMWPE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 517
2304 Hair Mechanical Properties Depending on Age and Origin

Authors: Meriem Benzarti, Mohamed Ben Tkaya, Cyril Pailler Mattei, Hassan Zahouani

Abstract:

Hair is a non homogenous complex material which can be associated with a polymer. It is made up 95% of Keratin. Hair has a great social significance for human beings. In the High Middle Ages, for example, long hairs have been reserved for kings and nobles. Most common interest in hair is focused on hair growth, hair types and hair care, but hair is also an important biomaterial which can vary depending on ethnic origin or on age, hair colour for example can be a sign of ethnic ancestry or age (dark hair for Asiatic, blond hair for Caucasian and white hair for old people in general). In this context, different approaches have been conducted to determine the differences in mechanical properties and characterize the fracture topography at the surface of hair depending on its type and its age. A tensile testing machine was especially designed to achieve tensile tests on hair. This device is composed of a microdisplacement system and a force sensor whose peak load is limited to 3N. The curves and the values extracted from each experiment, allow us to compare the evolution of the mechanical properties from one hair to another. Observations with a Scanning Electron Microscope (SEM) and with an interferometer were made on different hairs. Thus, it is possible to access the cuticle state and the fracture topography for each category.

Keywords: Hair, relaxation test, SEM, interferometer, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407
2303 Web Application for Evaluating Tests in Distance Learning Systems

Authors: Bogdan Walek, Vladimir Bradac, Radim Farana

Abstract:

Distance learning systems offer useful methods of learning and usually contain a final course test or another form of test. The paper proposes a web application for evaluating tests using an expert system in distance learning systems. The proposed web application is appropriate for didactic tests or tests with results for subsequent studying follow-up courses. The web application works with test questions and uses an expert system and LFLC tool for test evaluation. After test evaluation, the results are visualized and shown to the student.

Keywords: Distance learning, test, uncertainty, fuzzy, expert system, student.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
2302 Biaxial Testing of Fabrics - A Comparison of Various Testing Methodologies

Authors: O.B. Ozipek, E. Bozdag, E. Sunbuloglu, A. Abdullahoglu, E. Belen, E. Celikkanat

Abstract:

In textile industry, besides the conventional textile products, technical textile goods, that have been brought external functional properties into, are being developed for technical textile industry. Especially these products produced with weaving technology are widely preferred in areas such as sports, geology, medical, automotive, construction and marine sectors. These textile products are exposed to various stresses and large deformations under typical conditions of use. At this point, sufficient and reliable data could not be obtained with uniaxial tensile tests for determination of the mechanical properties of such products due to mainly biaxial stress state. Therefore, the most preferred method is a biaxial tensile test method and analysis. These tests and analysis is applied to fabrics with different functional features in order to establish the textile material with several characteristics and mechanical properties of the product. Planar biaxial tensile test, cylindrical inflation and bulge tests are generally required to apply for textile products that are used in automotive, sailing and sports areas and construction industry to minimize accidents as long as their service life. Airbags, seat belts and car tires in the automotive sector are also subject to the same biaxial stress states, and can be characterized by same types of experiments. In this study, in accordance with the research literature related to the various biaxial test methods are compared. Results with discussions are elaborated mainly focusing on the design of a biaxial test apparatus to obtain applicable experimental data for developing a finite element model. Sample experimental results on a prototype system are expressed.

Keywords: Biaxial Stress, Bulge Test, Cylindrical Inflation, Fabric Testing, Planar Tension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4090
2301 Numerical and Experimental Investigation of Mixed-Mode Fracture of Cement Paste and Interface under Three-Point Bending Test

Authors: S. Al Dandachli, F. Perales, Y. Monerie, F. Jamin, M. S. El Youssoufi, C. Pelissou

Abstract:

The goal of this research is to study the fracture process and mechanical behavior of concrete under I–II mixed-mode stress, which is essential for ensuring the safety of concrete structures. For this purpose, two-dimensional simulations of three-point bending tests under variable load and geometry on notched cement paste samples of composite samples (cement paste/siliceous aggregate) are modeled by employing Cohesive Zone Models (CZMs). As a result of experimental validation of these tests, the CZM model demonstrates its capacity to predict fracture propagation at the local scale.

Keywords: Concrete, cohesive zone model, microstructure, fracture, three-point flexural test bending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 254
2300 Mechanical Testing of Composite Materials for Monocoque Design in Formula Student Car

Authors: Erik Vassøy Olsen, Hirpa G. Lemu

Abstract:

Inspired by the Formula-1 competition, IMechE (Institute of Mechanical Engineers) and Formula SAE (Society of Mechanical Engineers) organize annual competitions for University and College students worldwide to compete with a single-seat racecar they have designed and built. Design of the chassis or the frame is a key component of the competition because the weight and stiffness properties are directly related with the performance of the car and the safety of the driver. In addition, a reduced weight of the chassis has direct influence on the design of other components in the car. Among others, it improves the power to weight ratio and the aerodynamic performance. As the power output of the engine or the battery installed in the car is limited to 80 kW, increasing the power to weight ratio demands reduction of the weight of the chassis, which represents the major part of the weight of the car. In order to reduce the weight of the car, ION Racing team from University of Stavanger, Norway, opted for a monocoque design. To ensure fulfilment of the competition requirements of the chassis, the monocoque design should provide sufficient torsional stiffness and absorb the impact energy in case of possible collision. The study reported in this article is based on the requirements for Formula Student competition. As part of this study, diverse mechanical tests were conducted to determine the mechanical properties and performances of the monocoque design. Upon a comprehensive theoretical study of the mechanical properties of sandwich composite materials and the requirements of monocoque design in the competition rules, diverse tests were conducted including 3-point bending test, perimeter shear test and test for absorbed energy. The test panels were homemade and prepared with equivalent size of the side impact zone of the monocoque, i.e. 275 mm x 500 mm, so that the obtained results from the tests can be representative. Different layups of the test panels with identical core material and the same number of layers of carbon fibre were tested and compared. Influence of the core material thickness was also studied. Furthermore, analytical calculations and numerical analysis were conducted to check compliance to the stated rules for Structural Equivalency with steel grade SAE/AISI 1010. The test results were also compared with calculated results with respect to bending and torsional stiffness, energy absorption, buckling, etc. The obtained results demonstrate that the material composition and strength of the composite material selected for the monocoque design has equivalent structural properties as a welded frame and thus comply with the competition requirements. The developed analytical calculation algorithms and relations will be useful for future monocoque designs with different lay-ups and compositions.

Keywords: Composite material, formula student, ion racing, monocoque design, structural equivalence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6144
2299 Experimental Analysis and Numerical Simulation of Smart Sandwich Beams Behavior in Honeycomb Magnetorheological Elastomer

Authors: A. Khebli, S. Aguib, Y. Kateb, L. Guenfoud, N. Chikh, M. Tourab, T. Djedid, W. Dilmi, A. Hadidi, H. Meglouli

Abstract:

Composite structures based on magnetorheological elastomers (MREs) are widely used in many industrial sectors, such as automotive, naval, railway, aeronautical, aerospace, and building industries because of their adjustable mechanical properties by an external stimulus. In this work, experimental tests and numerical simulations carried out have shown that the use of these new structures, developed from honeycomb core, and MRE with aluminum skins, make it possible to improve particularly the overall rigidity and to reduce the vibration amplitudes. The results found showed that these hybrid structures have a very good mechanical resistance due mainly to the honeycomb core, and a very good shock absorber due mainly to the core of the MRE. The elaborated composite structure is intended to be used in industrial sectors subject to great efforts and a high amplitude of vibration such as helicopter wings and air turbines.

Keywords: Hybrid sandwich structures, magnetorheological elastomer, honeycomb, 3-point bending, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71
2298 A Study on Cement-Based Composite Containing Polypropylene Fibers and Finely Ground Glass Exposed to Elevated Temperatures

Authors: O. Alidoust, I. Sadrinejad, M. A. Ahmadi

Abstract:

High strength concrete has been used in situations where it may be exposed to elevated temperatures. Numerous authors have shown the significant contribution of polypropylene fiber to the spalling resistance of high strength concrete. When cement-based composite that reinforced by polypropylene fibers heated up to 170 °C, polypropylene fibers readily melt and volatilize, creating additional porosity and small channels in to the matrix that cause the poor structure and low strength. This investigation develops on the mechanical properties of mortar incorporating polypropylene fibers exposed to high temperature. Also effects of different pozzolans on strength behaviour of samples at elevated temperature have been studied. To reach this purpose, the specimens were produced by partial replacement of cement with finely ground glass, silica fume and rice husk ash as high reactive pozzolans. The amount of this replacement was 10% by weight of cement to find the effects of pozzolans as a partial replacement of cement on the mechanical properties of mortars. In this way, lots of mixtures with 0%, 0.5%, 1% and 1.5% of polypropylene fibers were cast and tested for compressive and flexural strength, accordance to ASTM standard. After that specimens being heated to temperatures of 300, 600 °C, respectively, the mechanical properties of heated samples were tested. Mechanical tests showed significant reduction in compressive strength which could be due to polypropylene fiber melting. Also pozzolans improve the mechanical properties of sampels.

Keywords: Mechanical properties, compressive strength, Flexural strength, pozzolanic behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
2297 Effects of School Facilities’ Mechanical and Plumbing Characteristics and Conditions on Student Attendance, Academic Performance and Health

Authors: Erica Cochran Hameen, Bobuchi Ken-Opurum, Shalini Priyadarshini, Berangere Lartigue, Sadhana Anath-Pisipati

Abstract:

School districts throughout the United States are constantly seeking measures to improve test scores, reduce school absenteeism and improve indoor environmental quality. It is imperative to identify key building investments which will provide the largest benefits to schools in terms of improving the aforementioned factors. This study uses Analysis of Variance (ANOVA) tests to statistically evaluate the impact of a school building’s mechanical and plumbing characteristics on a child’s educational performance. The educational performance is measured via three indicators, i.e. test scores, suspensions, and absenteeism. The study investigated 125 New York City school facilities to determine the potential correlations between 50 mechanical and plumbing variables and the performance indicators. Key findings from the tests revealed that elementary schools with pneumatic systems in “good” condition have 48.8% lower percentages of students scoring at the minimum English Language Arts (ELA) competency level compared with those with no pneumatic system. Additionally, elementary schools with “unit heaters/cabinet heaters” in “good to fair” conditions have 1.1% higher attendance rates compared to schools with no “unit heaters/cabinet heaters” or those in inferior condition. Furthermore, elementary schools with air conditioning have 0.6% higher attendance rates compared to schools with no air conditioning, and those with interior floor drains in “good” condition have 1.8% higher attendance rates compared to schools with interior drains in inferior condition.

Keywords: Academic attendance and performance, mechanical and plumbing systems, schools, student health.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 572
2296 Comparative Evaluation of the Biopharmaceutical and Chemical Equivalence of the Some Commercial Brands of Paracetamol Tablets

Authors: Raniah Al-Shalabi, Omaima Al- Gohary, Samar Afify, Eram Eltahir

Abstract:

Acetaminophen (Paracetamol) tablets are popular OTC products among patients as analgesics and antipyretics. Paracetamol is marketed by a lot of suppliers around the world. The aim of the present investigation was to compare between many types of paracetamol tablets obtained from different suppliers (six brands produced by different pharmaceutical companies in middle east countries, and Panadol® manufactured in Ireland), by different quality control tests according to USP pharmacopeia.Using Non official tests-hardness and friability; official tests- disintegration, dissolution, and drug content. Additionally, evaluate the influence of temperatures 4°C, 25°C and 40°C at 75% relative humidity on the stability of the same brands in their original packaging has been conducted for two months. The results revealed that all paracetamol tablet brands complied with the official USP specifications. In conclusion, paracetamol tablets preferred to be stored at 25°C. All the tested brands being biopharmaceutically and chemically equivalent.

Keywords: Non official tests-hardness and friability, official tests –disintegration, dissolution, and drug content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3202
2295 Mechanical Equation of State in an Al-Li Alloy

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

Existence of plastic equation of state has been investigated by performing a series of load relaxation tests at various temperatures using an Al-Li alloy. A plastic equation of state is first developed from a simple kinetics consideration for a mechanical activation process of a leading dislocation piled up against grain boundaries. A series of load relaxation test has been conducted at temperatures ranging from 200 to 530oC to obtain the stress-strain rate curves. A plastic equation of state has been derived from a simple consideration of dislocation kinetics and confirmed by experimental results.

Keywords: Plastic equation of state, Dislocation kinetics, Load relaxation test, Al-Li alloy, Microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
2294 The Design of a Die for the Processing of Aluminum through Equal Channel Angular Pressing

Authors: P. G. F. Siqueira, N. G. S. Almeida, P. M. A. Stemler, P. R. Cetlin, M. T. P. Aguilar

Abstract:

The processing of metals through Equal Channel Angular Pressing (ECAP) leads to their remarkable strengthening. The ECAP dies control the amount of strain imposed on the material through its geometry, especially through the angle between the die channels, and thus the microstructural and mechanical properties evolution of the material. The present study describes the design of an ECAP die whose utilization and maintenance are facilitated, and that also controls the eventual undesired flow of the material during processing. The proposed design was validated through numerical simulations procedures using commercial software. The die was manufactured according to the present design and tested. Tests using aluminum alloys also indicated to be suitable for the processing of higher strength alloys.

Keywords: ECAP, mechanical design, numerical methods, SPD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721
2293 Mechanical and Thermal Properties of Hybrid Blends of LLDPE/Starch/PVA

Authors: Rahmah, M., Farhan, M., Akidah, N.M.Y

Abstract:

Polybag and mulch film in agricultural field are used plastics which caused environmental problems after transplantation and planting processes due to the discarded wastes. Thus a degradable polybag was designed in this study to replace non degradable polybag with natural biodegradable resin that is widely available, namely sago starch (SS) and polyvinyl alcohol (PVA). Hybrid blend consists of SS, PVA and linear low density polyethylene (LLDPE) was compounded at different ratios. The thermal and mechanical properties of the blends were investigated. Hybrid films underwent landfill degradation tests for up to 2 months. The films showed gelation and melting transition existed for all three systems with significant melting peaks by LLDPE and PVA. All hybrid blends loses its LLDPE semi crystalline characteristics as PVA and SS systems had disrupted crystallinity and enhanced the amorphosity of the hybrid system. Generally, blending SS with PVA improves the mechanical properties of the SS based materials. Tensile strength of each film was also decreased with the increase of SS contents while its modulus had increased with SS content.

Keywords: Appearance peak, LLDPE, PVA, sago starch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2985
2292 Changes in Selected Fuel Properties of Sewage Sludge as a Result of its Storage

Authors: Michal M. Koziol

Abstract:

The article presents test results on the changes occurring in sewage sludge during the process of its storage. Tests were conducted on mechanically dehydrated sewage sludge derived from large municipal sewage treatment plants equipped with biological sewage treatment systems. In testing presented in the paper the focus was on the basic fuel properties of sewage sludge: moisture content, heat of combustion, carbon share. In the first part of the article the overview of the issues concerning the sewage sludge management is presented and the genesis of tests is explained. Further in the paper, selected results of conducted tests are discussed. Changes in tested parameters were determined in the period of a 10- month sewage storage.

Keywords: fuel properties, laboratory tests, sewage sludge, storage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1234
2291 Effect of Non-Metallic Inclusion from the Continuous Casting Process on the Multi-Stage Forging Process and the Tensile Strength of the Bolt: A Case Study

Authors: Tomasz Dubiel, Tadeusz Balawender, Mirosław Osetek

Abstract:

The paper presents the influence of non-metallic inclusions on the multi-stage forging process and the mechanical properties of the dodecagon socket bolt used in the automotive industry. The detected metallurgical defect was so large that it directly influenced the mechanical properties of the bolt and resulted in failure to meet the requirements of the mechanical property class. In order to assess the defect, an X-ray examination and metallographic examination of the defective bolt were performed, showing exogenous non-metallic inclusion. The size of the defect on the cross section was 0.531 mm in width and 1.523 mm in length; the defect was continuous along the entire axis of the bolt. In analysis, a finite element method (FEM) simulation of the multi-stage forging process was designed, taking into account a non-metallic inclusion parallel to the sample axis, reflecting the studied case. The process of defect propagation due to material upset in the head area was analyzed. The final forging stage in shaping the dodecagonal socket and filling the flange area was particularly studied. The effect of the defect was observed to significantly reduce the effective cross-section as a result of the expansion of the defect perpendicular to the axis of the bolt. The mechanical properties of products with and without the defect were analyzed. In the first step, the hardness test confirmed that the required value for the mechanical class 8.8 of both bolt types was obtained. In the second step, the bolts were subjected to a static tensile test. The bolts without the defect gave a positive result, while all 10 bolts with the defect gave a negative result, achieving a tensile strength below the requirements. Tensile strength tests were confirmed by metallographic tests and FEM simulation with perpendicular inclusion spread in the area of the head. The bolts were damaged directly under the bolt head, which is inconsistent with the requirements of ISO 898-1. It has been shown that non-metallic inclusions with orientation in accordance with the axis of the bolt can directly cause loss of functionality and these defects should be detected even before assembling in the machine element.

Keywords: continuous casting, multi-stage forging, non-metallic inclusion, upset bolt head

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 479
2290 Finite Element Analysis of Ball-Joint Boots under Environmental and Endurance Tests

Authors: Young-Doo Kwon, Seong-Hwa Jun, Dong-Jin Lee, Hyung-Seok Lee

Abstract:

Ball joints support and guide certain automotive parts that move relative to the frame of the vehicle. Such ball joints are covered and protected from dust, mud, and other interfering materials by ball-joint boots made of rubber—a flexible and near-incompressible material. The boots may experience twisting and bending deformations because of the motion of the joint arm. Thus, environmental and endurance tests of ball-joint boots apply both bending and twisting deformations. In this study, environmental and endurance testing was simulated via the finite element method performed by using a commercial software package. The ranges of principal stress and principal strain values that are known to directly affect the fatigue lives of the parts were sought. By defining these ranges, the number of iterative tests and modifications of the materials and dimensions of the boot can be decreased. Therefore, instead of performing actual part tests, manufacturers can perform standard fatigue tests in trials of different materials by applying only the defined range of stress or strain values.

Keywords: Boot, endurance tests, rubber, FEA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
2289 Application of the Experimental Planning Design to the Notched Precracked Tensile Fracture of Composite

Authors: N. Mahmoudi

Abstract:

Composite materials have important assets compared to traditional materials. They bring many functional advantages: lightness, mechanical resistance and chemical, etc. In the present study we examine the effect of a circular central notch and a precrack on the tensile fracture of two woven composite materials. The tensile tests were applied to a standardized specimen, notched and a precarcked (orientation of the crack 0°, 45° and 90°). These tensile tests were elaborated according to an experimental planning design of the type 23.31 requiring 24 experiments with three repetitions. By the analysis of regression, we obtained a mathematical model describing the maximum load according to the influential parameters (hole diameter, precrack length, angle of a precrack orientation). The specimens precracked at 90° have a better behavior than those having a precrack at 45° and still better than those having of the precracks oriented at 0°. In addition the maximum load is inversely proportional to the notch size.

Keywords: Polymer matrix, Glasses, Fracture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
2288 On the Comparison of Several Goodness of Fit tests under Simple Random Sampling and Ranked Set Sampling

Authors: F. Azna A. Shahabuddin, Kamarulzaman Ibrahim, Abdul Aziz Jemain

Abstract:

Many works have been carried out to compare the efficiency of several goodness of fit procedures for identifying whether or not a particular distribution could adequately explain a data set. In this paper a study is conducted to investigate the power of several goodness of fit tests such as Kolmogorov Smirnov (KS), Anderson-Darling(AD), Cramer- von- Mises (CV) and a proposed modification of Kolmogorov-Smirnov goodness of fit test which incorporates a variance stabilizing transformation (FKS). The performances of these selected tests are studied under simple random sampling (SRS) and Ranked Set Sampling (RSS). This study shows that, in general, the Anderson-Darling (AD) test performs better than other GOF tests. However, there are some cases where the proposed test can perform as equally good as the AD test.

Keywords: Empirical distribution function, goodness-of-fit, order statistics, ranked set sampling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
2287 Preparation and Characterization of Newly Developed Trabecular Structures in Titanium Alloy to Optimize Osteointegration

Authors: M. Regis, E. Marin, S. Fusi, M. Pressacco, L. Fedrizzi

Abstract:

Electron Beam Melting (EBM) process was used to prepare porous scaffolds with controlled porosity to ensure optimal levels of osteointegration for different trabeculae sizes. Morphological characterization by means of SEM analyses was carried out to assess pore dimensions; tensile, compression and adhesion tests have been carried out to determine the mechanical behavior. The results indicate that EBM process allows the creation of regular and repeatable porous scaffolds. Mechanical properties greatly depend on pore dimension and on bulk-pore ratio. Adhesion resistance meets the normative requirements, and the overall performance of the produced structures is compatible with potential orthopaedic applications.

Keywords: Additive manufacturing, orthopaedic implants, osteointegration, trabecular structures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
2286 Microstructure and Mechanical Properties of Mg-Zn Alloys

Authors: Young Sik Kim, Tae Kwon Ha

Abstract:

Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys with Zn contents from 6 to 10 weight percent was investigated in this study. Through calculation of phase equilibria of Mg-Zn alloys, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperatures from 300 to 400oC, where supersaturated solid solution can be obtained. Solid solution treatment of Mg-Zn alloys was successfully conducted at 380oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200oC for 10 hrs. By addition of Zn by 10 weight percent, hardness and strength were enhanced.

Keywords: Mg-Zn alloy, Heat treatment, Microstructure, Mechanical properties, Hardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2320
2285 Theoretical Considerations of the Influence of Mechanical Uniaxial Stress on Pixel Readout Circuits

Authors: Georgios C. Dogiamis, Bedrich J. Hosticka, Anton Grabmaier

Abstract:

In this work the effects of uniaxial mechanical stress on a pixel readout circuit are theoretically analyzed. It is the effects of mechanical stress on the in-pixel transistors do not arise at the output, when a correlated double sampling circuit is used. However, mechanical stress effects on the photodiode will directly appear at the readout chain output. Therefore, compensation techniques are needed to overcome this situation. Moreover simulation technique of mechanical stress is proposed and diverse layout as well as design recommendations are put forward, in order to minimize stress related effects on the output of a circuit. he shown, that wever, Moreover, a out

Keywords: mechanical uniaxial stress, pixel readout circuit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
2284 Influence of High Temperature and Humidity on Polymer Composites Used in Relining of Sewage

Authors: Parastou Kharazmi, Folke Björk

Abstract:

Some of the main causes for degradation of polymeric materials are thermal aging, hydrolysis, oxidation or chemical degradation by acids, alkalis or water. The first part of this paper provides a brief summary of advances in technology, methods and specification of composite materials for relining as a rehabilitation technique for sewage systems. The second part summarizes an investigation on frequently used composite materials for relining in Sweden, the rubber filled epoxy composite and reinforced polyester composite when they were immersed in deionized water or in dry conditions, and elevated temperatures up to 80°C in the laboratory. The tests were conducted by visual inspection, microscopy, Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC) as well as mechanical testing, three point bending and tensile testing.

Keywords: Composite, epoxy, polyester, relining, sewage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658
2283 An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading

Authors: Emre Kara, Şura Karakuzu, Ahmet F. Geylan, Metehan Demir, Kadir Koç, Halil Aykul

Abstract:

The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum alloy foam core, the skins made of three different types of fabrics and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances by aiming the analyses of their flexural performance in terms of absorbed energy, peak force values and collapse mechanisms. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force and absorbed energy values, collapse mechanisms and adhesion quality. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions.

Keywords: Adhesive and adhesion, Aluminum foam, Bending, Collapse mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146
2282 Properties of Bricks Produced With Recycled Fine Aggregate

Authors: S. Ismail, Z. Yaacob

Abstract:

The main aim of this research is to study the possible use of recycled fine aggregate made from waste rubble wall to substitute partially for the natural sand used in the production of cement and sand bricks. The bricks specimens were prepared by using 100% natural sand; they were then replaced by recycled fine aggregate at 25, 50, 75, and 100% by weight of natural sand. A series of tests was carried out to study the effect of using recycled aggregate on the physical and mechanical properties of bricks, such as density, drying shrinkage, water absorption characteristic, compressive and flexural strength. Test results indicate that it is possible to manufacture bricks containing recycled fine aggregate with good characteristics that are similar in physical and mechanical properties to those of bricks with natural aggregate, provided that the percentage of recycled fine aggregates is limited up to 50-75%.

Keywords: Bricks, cement, recycled aggregate, sand

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3549
2281 Rheological and Thermomechanical Properties of Graphene/ABS/PP Nanocomposites

Authors: Marianna I. Triantou, Konstantina I. Stathi, Petroula A. Tarantili

Abstract:

In the present study, the incorporation of graphene into blends of acrylonitrile-butadiene-styrene terpolymer with polypropylene (ABS/PP) was investigated focusing on the improvement of their thermomechanical characteristics and the effect on their rheological behavior. The blends were prepared by melt mixing in a twin-screw extruder and were characterized by measuring the MFI as well as by performing DSC, TGA and mechanical tests. The addition of graphene to ABS/PP blends tends to increase their melt viscosity, due to the confinement of polymer chains motion. Also, graphene causes an increment of the crystallization temperature (Tc), especially in blends with higher PP content, because of the reduction of surface energy of PP nucleation, which is a consequence of the attachment of PP chains to the surface of graphene through the intermolecular CH-π interaction. Moreover, the above nanofiller improves the thermal stability of PP and increases the residue of thermal degradation at all the investigated compositions of blends, due to the thermal isolation effect and the mass transport barrier effect. Regarding the mechanical properties, the addition of graphene improves the elastic modulus, because of its intrinsic mechanical characteristics and its rigidity, and this effect is particularly strong in the case of pure PP.

Keywords: Acrylonitrile-butadiene-styrene terpolymer, blends, graphene, polypropylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3740
2280 An Investigation of Final Tests of Translation as Practiced in Iranian Undergraduate English Translation Program

Authors: Hossein Heidari Tabrizi, Azizeh Chalak

Abstract:

The present study examined how translation teachers develop final tests as measures for checking on the quality of students’ academic translation in Iranian context. To achieve this goal, thirty experienced male and female translation teachers from the four types of the universities offering the program were invited to an in-depth 30-minute one-session semi-structured interview. The responses provided showed how much discrepancy exists among the Iranian translation teachers (as developers of final translation tests), who are least informed with the current translation evaluation methods. It was also revealed that the criteria they use for developing such tests and scoring student translations are not theory-driven but are highly subjective, mainly based on their personal experience and intuition. Hence, the quality and accountability of such tests are under serious question. The results also confirmed that the dominant method commonly and currently practiced is the purely essay-type format. To remedy the situation, some suggestions are in order. As part of the solution, to improve the reliability and validity of such tests, the present summative, product-oriented evaluation should be accompanied with some formative, process-oriented methods of evaluation. Training the teachers and helping them get acquainted with modern principles of translation evaluation as well as the existing models, and rating scales does improve the quality of academic translation evaluation.

Keywords: Iranian universities, students’ academic translations, translation final tests, undergraduate translation programs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
2279 Research of the Load Bearing Capacity of Inserts Embedded in CFRP under Different Loading Conditions

Authors: F. Pottmeyer, M. Weispfenning, K. A. Weidenmann

Abstract:

Continuous carbon fiber reinforced plastics (CFRP) exhibit a high application potential for lightweight structures due to their outstanding specific mechanical properties. Embedded metal elements, so-called inserts, can be used to join structural CFRP parts. Drilling of the components to be joined can be avoided using inserts. In consequence, no bearing stress is anticipated. This is a distinctive benefit of embedded inserts, since continuous CFRP have low shear and bearing strength. This paper aims at the investigation of the load bearing capacity after preinduced damages from impact tests and thermal-cycling. In addition, characterization of mechanical properties during dynamic high speed pull-out testing under different loading velocities was conducted. It has been shown that the load bearing capacity increases up to 100% for very high velocities (15 m/s) in comparison with quasi-static loading conditions (1.5 mm/min). Residual strength measurements identified the influence of thermal loading and preinduced mechanical damage. For both, the residual strength was evaluated afterwards by quasi-static pull-out tests. Taking into account the DIN EN 6038 a high decrease of force occurs at impact energy of 16 J with significant damage of the laminate. Lower impact energies of 6 J, 9 J, and 12 J do not decrease the measured residual strength, although the laminate is visibly damaged - distinguished by cracks on the rear side. To evaluate the influence of thermal loading, the specimens were placed in a climate chamber and were exposed to various numbers of temperature cycles. One cycle took 1.5 hours from -40 °C to +80 °C. It could be shown that already 10 temperature cycles decrease the load bearing capacity up to 20%. Further reduction of the residual strength with increasing number of thermal cycles was not observed. Thus, it implies that the maximum damage of the composite is already induced after 10 temperature cycles.

Keywords: Composite, joining, inserts, dynamic loading, thermal loading, residual strength, impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
2278 Performance Evaluation of the Post-Installed Anchor for Sign Structure

Authors: Wooyoung Jung, Minho Kwon, Jinsup Kim, Buseog Ju

Abstract:

Numerous experimental tests for post-installed anchor systems drilled in hardened concrete were conducted in order to estimate pull-out and shear strength accounting for uncertainties such as torque ratios, embedment depths and different diameters in demands. In this study, the strength of the systems was significantly changed by the effect of those three uncertainties during pull-out experimental tests, whereas the shear strength of the systems was not affected by torque ratios. It was also shown that concrete cone failure or damage mechanism was generally investigated during and after pull-out tests and in shear strength tests, mostly the anchor systems were failed prior to failure of primary structural system. Furthermore, 3D finite element model for the anchor systems was created by ABAQUS for the numerical analysis. The verification of finite element model was identical till the failure points to the load-displacement relationship specified by the experimental tests.

Keywords: Post-installed anchor, Pull-out test, Shear test, Torque , ABAQUS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2662