Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30663
Rheological and Thermomechanical Properties of Graphene/ABS/PP Nanocomposites

Authors: Marianna I. Triantou, Petroula A. Tarantili, Konstantina I. Stathi


In the present study, the incorporation of graphene into blends of acrylonitrile-butadiene-styrene terpolymer with polypropylene (ABS/PP) was investigated focusing on the improvement of their thermomechanical characteristics and the effect on their rheological behavior. The blends were prepared by melt mixing in a twin-screw extruder and were characterized by measuring the MFI as well as by performing DSC, TGA and mechanical tests. The addition of graphene to ABS/PP blends tends to increase their melt viscosity, due to the confinement of polymer chains motion. Also, graphene causes an increment of the crystallization temperature (Tc), especially in blends with higher PP content, because of the reduction of surface energy of PP nucleation, which is a consequence of the attachment of PP chains to the surface of graphene through the intermolecular CH-π interaction. Moreover, the above nanofiller improves the thermal stability of PP and increases the residue of thermal degradation at all the investigated compositions of blends, due to the thermal isolation effect and the mass transport barrier effect. Regarding the mechanical properties, the addition of graphene improves the elastic modulus, because of its intrinsic mechanical characteristics and its rigidity, and this effect is particularly strong in the case of pure PP.

Keywords: Graphene, Polypropylene, blends, acrylonitrile-butadiene-styrene terpolymer

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3272


[1] S. N. Maiti, V. Agarwal, A. K. Gupta, "Melt rheological behavior of PP–SAN blend,” J. Appl. Polym. Sci., vol. 43, pp. 1891-1900, 1991.
[2] A. C. Patel, R. B. Brahmbhatt, B. D. Sarawade, S. Devi, "Morphological and mechanical properties of PP/ABS blends compatibilized with PP-gacrylic acid,” J. Appl. Polym. Sci., vol. 81, pp. 1731-1741, 2001.
[3] H. G. Lee, Y.-T. Sung, Y. K. Lee, W. N. Kim, H. G. Yoom, H. S. Lee, "Effects of PP-g-MAH on the mechanical, morphological and rheological properties of polypropylene and poly(acrylonitrilebutadiene- styrene) Blends,” Macromol. Research, vol. 17, pp. 417-423, 2009.
[4] P. Xiang-Fang, P. Jun, X. Xiao-li, T. Lih-Sheng, "Effect of organoclay on the mechanical properties and crystallization behaviors of injectionmolded PP/ABS/montmorillonite nanocomposites,” ANTEC, pp. 1105- 1108, 2009.
[5] C. Markin, H. L. Williams, "Polypropylene/ABS terpolymer blends. mixing and mechanical properties,” J. Appl. Polym. Sci., vol. 25, pp. 2451-2466, 1980.
[6] A. K. Gupta, A. K. Jain, S. N. Maiti, "Studies on binary and ternary blends of polypropylene with ABS and LDPE. I. Melt rheological behavior,” J. Appl. Polym. Sci., vol. 38, pp. 1699-1717, 1989.
[7] A. K. Gupta, A. K. Jain, B. K. Ratman, S. N. Maiti, "Studies on binary and ternary blends of polypropylene with ABS and LDPE. II. Impact and tensile properties,” J. Appl. Polym. Sci., vol. 39, pp. 515-530, 1990.
[8] Q. Shu, X. Zou, W. Dai, Z. Fu, "Formation of β-iPP in isotactic polypropylene/acrylonitrile–butadiene–styrene blends: Effect of resin type, phase composition, and thermal condition,” J. Macromol. Sci., Part B: Physics, vol. 51, pp. 756–766, 2012.
[9] C. Wang, Z. Zhang, Y. Du, J. Zhang, K. Mai, "Effect of acrylonitrile– butadiene–styrene copolymer (ABS) on β-nucleation in β-nucleated polypropylene/ABS blends,” Polym. Bull., vol. 69, pp. 847–859, 2012.
[10] M. Frounchi, R. P. Burford, "State of compatibility in crystalline polypropylene/ABS amorphous terpolymer thermoplastic blends. Effect of styrenic copolymers as compatibilisers,” Iran. J. Polym. Sci. and Technol., vol. 2, pp. 59-68, 1993.
[11] E. Arroyo, C. Guerrero, V. Gonzalez, "Blends of ABS and iPP,” ANTEC
[12] Y. K. Lee, J. B. Lee, D. H. Park, W. N. Kim, "Effects of accelerated aging and compatibilizers on the mechanical and morphological properties of polypropylene and poly(acrylonitrile-butadiene-styrene) blends”, J. Appl. Polym. Sci., vol. 127, pp. 1032-1037, 2013.
[13] C. K. Kum, Y.-T. Sung, Y. S. Kim, H. G. Lee, W. N. Kim, H.S. Lee, H.G. Yoon, "Effects of compatibilizer on mechanical, morphological, and rheological properties of polypropylene/poly(acrylonitrilebutadiene- styrene) blends,” Macromol. Research, vol. 15, pp. 308-314, 2007.
[14] A. C. Patel, R. B. Brahmbhatt, S. Devi, "Mechanical properties and morphology of PP/ABS blends compatibilized with PP-g-2-HEMA,” J. Appl. Polym. Sci., vol. 88, pp. 72-78, 2003.
[15] Y. Wang, Q. Zhang, Q. Fu, "Compatibilization of immiscible poly(propylene)/polystyrene blends using clay”, Macromol. Rapid Commun., vol. 24, issue 3, pp. 231-235, 2003.
[16] B. Chen, J.R.G. Evans, "Mechanical properties of polymer-blend nanocomposites with organoclays: Polystyrene/ABS and high impact polystyrene/ABS”, J. Polym. Sci., Part B: Polym. Phys., vol. 49, issue 6, pp. 443-454, 2011.
[17] C. C. Ibeh, N. Baker, D. Lamm, S. Wang, D. Weber, J. Oplonitnik, ANTEC conference proceedings 5, pp. 1893-1897, 2005.
[18] Y. T. Sung, Y. S. Kim, Y. K. Lee, W. N. Kim, H. S. Lee, J. Y. Sung, H. G. Yoon, "Effects of clay on the morphology of poly(acrylonitrilebutadiene- styrene) and polypropylene nanocomposites,” Polym. Eng. Sci., vol. 47, pp. 1671-1677, 2007.
[19] B. Panda, A. R. Bhattacharyya, A. R. Kulkarni, "Ternary polymer blends of polyamide 6, polypropylene and acrylonitrile-butadienestyrene: Influence of multi walled carbon nanotubes on phase morphology, electrical conductivity, and crystallization,” Polym. Eng. Sci., vol. 51, pp. 1550-1563, 2011.
[20] R. A. Khare, A. R. Bhattacharyya, A. R. Kulkarni, "Melt-mixed polypropylene/acrylonitrile-butadiene-styrene blends with multiwall carbon nanotubes: Effect of compatibilizer and modifier on morphology and electrical conductivity,” J. Appl. Polym. Sci., vol. 120, pp. 2663– 2672, 2011.
[21] R. A. Khare, A. R. Bhattacharyya, A. R. Kulkarni, M. Saroop, A. Biswas, "Influence of multiwall carbon nanotubes on morphology and electrical conductivity of PP/ABS blends,” J. Polym. Sci.: Part B: Polym. Physics, vol. 46, pp. 2286–2295, 2008.
[22] M. Milani, R. Ouijada, N. R. S. Basso, A. P. Graebin, G. B. Galland, "Influence of the graphite type on the synthesis of polypropylene/graphene nanocomposites,” J. Polym. Sci., Part A: Polym. Chem.,vol. 50, pp. 3958-3605, 2012.
[23] C. I. Ferreira., C. Dal Castel., M. A. S. Oviedoc, R. S. Mauler., "Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites,” Thermochim. Acta, vol. 553, pp. 40– 48, 2013.
[24] P. Steurer, R. Wissert, R. Thomann, R. Mülhaupt, "Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide,” Macromol. Rapid Commun., vol. 30, pp. 316–327, 2009.
[25] S. Zhao, F. Chen, C. Zhao, Y. Huang, J.-Y. Dong, C. C. Han, "Interpenetrating network formation in isotactic polypropylene/graphene composites,” Polymer, vol. 54, pp. 3680-3690, 2013.
[26] G. Gedler, M. Antunes, V. Realinho, J. L. Velasco, "Novel polycarbonate-graphene nanocomposite foams prepared by CO2 dissolution,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 31, 2012.
[27] G. Gedler, M. Antunes, V. Realinho, J. L. Velasco, "Thermal stability of polycarbonate-graphene nanocomposite foams,” Polym. Degrad. Stab., vol. 97, pp. 1297-1304, 2012.
[28] P. Song, L. Liu, S. Fu, Y. Yu, C. Jin, Q. Wu, Y. Zhang, Q. Li, "Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites,” Nanotechnology, vol. 24, no. 12, 2013.
[29] B. Shen, W. Zhai, M. Tao, D. Lu, W. Zheng, "Chemical functionalization of graphene oxide toward the tailoring of the interface in polymer composites,” Compos. Sci. Technol., vol. 77, pp. 87-94, 2013.
[30] S. V.Polschikov, P. M. Nedorezova, A. N. Klyamkina, A. A. Kovalchuk, A. M. Aladyshev, A. N. Shchegolikhin, V. G. Shevchenko, V. E. Muradyan, "Composite materials of graphene nanoplatelets and polypropylene, prepared by in situ polymerization,” J. Polym. Sci., vol. 127, issue 2, pp 904-911, Jan. 2013.
[31] H. J. Park, J. Meyer, S. Roth, V. Skákalová, "Growth and properties of few-layer graphene prepared by chemical vapor deposition,” Carbon, vol. 48, pp. 1088-1094, 2010.
[32] M. E. Achaby, F. E. Arrakhiz, S. Vaudreuil, A. K. Qaiss, M. Bousmina, O. Fassi-Fehri, "Mechanical, Thermal, and Rheological Properties of Graphene-Based Polypropylene Nanocomposites Prepared by Melt Mixing,” Polym.Compos., vol. 33, issue 5, pp. 733-744, May 2012.
[33] C. Heo, H.-G. Moon, C.-S. Yoon, J.-H. Chang, "ABS Nanocomposite films based on functionalized-graphene sheets”, J. Appl. Polym. Sci., vol. 124, pp. 4663–4670, 2012.
[34] M. Milani, D. González, R. Ouijada, N. R. S. Basso, M. L. Cerrada, D. Azambuja, G. B. Galland, "Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties,” Comp. Sci. Technol., vol. 84, pp. 1-7, 2013.
[35] V. G. Shevchenko, S. V. Polschiko, P. M. Nedorezova, A. N. Klyamkina, A. N. Shchegolikhin, A. M. Aladyshev, V. E. Muradyan, "In situ polymerized poly(propylene)/graphene nanoplatelets nanocomposites: Dielectric and microwave properties,” Polymer, vol. 53, pp. 5330-5335, 2012.
[36] J.-Z. Xu, C. Chen, Y. Wang, H. Tang, Z.-M. Li, B. S. Hsiao, "Graphene Nanosheets and Shear Flow Induced crystallization in isotactic polypropylene nanocomposites,” Macromolecules, vol. 44, pp. 2808– 2818, 2011.
[37] J.-E. An, G. W. Jeon, Y. G. Jeong, "Preparation and properties of polypropylene nanocomposites reinforced with exfoliated graphene”, Fibers Polym., vol. 13, no. 4, pp 507-514, 2012.
[38] P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, S. Fu, "Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties”, Polymer, vol. 52, pp. 4001-4010, 2011.
[39] J. Dai, Y. Shen, J.-H. Yang, T. Huang, N. Zhang, Y. Wang, "Crystallization and melting behaviors of polypropylene admixed by graphene and β-phase nucleating agent”, Colloid Polym. Sci., pp. 1-11, 2013.
[40] J. Ma, Q. Meng, I. Zaman, S. Zhu, A. Michelmore, N. Kawashima, C. H. Wang, H.-C. Kuan, "Development of polymer composites using modified, high-structural integrity graphene platelets,” Comp. Sci. Technol., vol. 91, pp. 82–90, 2014.
[41] J.-B. Chen, J.-Z. Xu, H. Pang, G.-J. Zhong, L. Xu, H. Tang, J.-H. Tang, Z.-M. Li, "Crystallization of Isotactic Polypropylene inside Dense Networks of Carbon Nanofillers”, J. Appl. Polym. Sci., vol. 131, issue 6, 2014.