Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32759
The Design of a Die for the Processing of Aluminum through Equal Channel Angular Pressing

Authors: P. G. F. Siqueira, N. G. S. Almeida, P. M. A. Stemler, P. R. Cetlin, M. T. P. Aguilar

Abstract:

The processing of metals through Equal Channel Angular Pressing (ECAP) leads to their remarkable strengthening. The ECAP dies control the amount of strain imposed on the material through its geometry, especially through the angle between the die channels, and thus the microstructural and mechanical properties evolution of the material. The present study describes the design of an ECAP die whose utilization and maintenance are facilitated, and that also controls the eventual undesired flow of the material during processing. The proposed design was validated through numerical simulations procedures using commercial software. The die was manufactured according to the present design and tested. Tests using aluminum alloys also indicated to be suitable for the processing of higher strength alloys.

Keywords: ECAP, mechanical design, numerical methods, SPD.

Digital Object Identifier (DOI): doi.org/10.6084/m9.figshare.12489812

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713

References:


[1] Shaeri, M.H.; Salehi, M.T.; Seyyedein, S.H.; Abutalebi, M.R.; Park, J.K.; Microstructure and mechanical properties of Al-7075 alloy processed by equal channel angular pressing combined with aging treatment, Materials & Design, Volume 57, 2014, Pages 250-257.
[2] Haase, C.; Kremer, O.; Hu, W.; Ingendahl. T.; Lapovok, R.; Molodov, D.A.; Equal-channel angular pressing and annealing of a twinning-induced plasticity steel: Microstructure, texture, and mechanical properties, Acta Materialia, Volume 107, 2016, Pages 239-253.
[3] Koizumi, T.; Kuroda, M.; Grain size effects in aluminum processed by severe plastic deformation, Materials Science and Engineering: A, Volume 710, 2018, Pages 300-308.
[4] Faria, C. G.; Almeida, N. G. S.; Aguilar, M. T. P.; Cetlin, P. R. Increasing the work hardening capacity of equal channel angular pressed (ECAPed) aluminum through multi-axial compression (MAC). Materials Letters. v. 174, p. 153-156, 2016.
[5] Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J.J.; Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progress in Materials Science, Volume 60, 2014, Pages 130-207.
[6] Xu, X.; Zhang, Q.; Hu, N.; Huang, Y.; Langdon, T.G.; Using an Al–Cu binary alloy to compare processing by multi-axial compression and high-pressure torsion, Mater. Sci. Eng. A, 588 (2013), pp. 280-287.
[7] Faria, C. G.; Almeida, N. G. S.; Bubani, F.C.; Balzuweit, K.; Aguilar, M. T. P.; Cetlin, P. R.; Microstructural evolution in the low strain amplitude multi-axial compression (LSA-MAC) after equal channel equal pressing (ECAP) of aluminum, Materials Letters, Volume 227, 2018, Pages 149-153.
[8] Valiev, R. Z.; Langdon T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science. V. 51, p. 881-981, 2006.
[9] Segal, V. M., Materials Processing by Simple Shear. Materials Science and Engineering, v. A197, p. 157-164, 1995.
[10] Jin, Y. G.; Baek, H. M.; Hwang, S. K.; Im,Y. T.; Jeon, B. C. Continuous high strength aluminum bolt manufacturing by the spring-loaded ECAP system. Journal of Materials Processing Technology. v. 212, p. 848-855, 2012.
[11] Iwahashi, Y.; Horita, Z.; Nemoto, M.; Langdon, T. G. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Materialia, V. 35, n. 2, p. 143-146, 1996.
[12] Purcek, G., Altan, B. S., Miskioglu, I., Ooi, P. H., Processing of Eutectic Zn – 5% Al Alloy by Equal-Channel Angular Pressing. Journal of Materials Processing Technology, v. 148, p. 279-287, 2004.
[13] Figueiredo, R. B. Processamento de uma liga PB-4%SB por Extrusão Angular em Canais iguais. Belo Horizonte: Escola de Engenharia da UFMG, 2005. 118p (M Sc Dissertation).
[14] Semiatin, S. L., Brown, J. O., Brown, T. M., Delo, D. P., Bieler, T. R., Beynon, J. H.; Strain-Path Effects During Hot Working of Ti-6Al-4V with a Colony Alpha Microstructure. Metallurgical and Materials Transactions, v. 32A, p. 1556-1559, 2001.
[15] Silva, F.R.F., et al. Microstructural evolution of an if steel deformed by equal channel angular pressing. Tecnol. Metal. Materials, vol. 5, no. 4, p. 193-197, 2009.
[16] Almeida, N. G. S. Comportamento mecânico da liga Al 6351 submetida à extrusão angular em canais iguais e compressão multiaxial cíclica. Belo Horizonte: Escola de Engenharia da UFMG, 2017. 90p (M Sc Dissertation).