Search results for: heat transfer temperature.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3744

Search results for: heat transfer temperature.

3534 Effect of Particle Size in Aviation Turbine Fuel-Al2O3 Nanofluids for Heat Transfer Applications

Authors: Sandipkumar Sonawane, Upendra Bhandarkar, Bhalchandra Puranik, S. Sunil Kumar

Abstract:

The effect of Alumina nanoparticle size on thermophysical properties, heat transfer performance and pressure loss characteristics of Aviation Turbine Fuel (ATF)-Al2O3 nanofluids is studied experimentally for the proposed application of regenerative cooling of semi-cryogenic rocket engine thrust chambers. Al2O3 particles with mean diameters of 50 nm or 150 nm are dispersed in ATF. At 500C and 0.3% particle volume concentration, the bigger particles show increases of 17% in thermal conductivity and 55% in viscosity, whereas the smaller particles show corresponding increases of 21% and 22% for thermal conductivity and viscosity respectively. Contrary to these results, experiments to study the heat transfer performance and pressure loss characteristics show that at the same pumping power, the maximum enhancement in heat transfer coefficient at 500C and 0.3% concentration is approximately 47% using bigger particles, whereas it is only 36% using smaller particles.

Keywords: Heat transfer performance, Nanofluids, Thermalconductivity, Viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
3533 Radiation Effect on Unsteady MHD Flow over a Stretching Surface

Authors: Zanariah Mohd Yusof, Siti Khuzaimah Soid, Ahmad Sukri Abd Aziz, Seripah Awang Kechil

Abstract:

Unsteady magnetohydrodynamics (MHD) boundary layer flow and heat transfer over a continuously stretching surface in the presence of radiation is examined. By similarity transformation, the governing partial differential equations are transformed to a set of ordinary differential equations. Numerical solutions are obtained by employing the Runge-Kutta-Fehlberg method scheme with shooting technique in Maple software environment. The effects of unsteadiness parameter, radiation parameter, magnetic parameter and Prandtl number on the heat transfer characteristics are obtained and discussed. It is found that the heat transfer rate at the surface increases as the Prandtl number and unsteadiness parameter increase but decreases with magnetic and radiation parameter.

Keywords: Heat transfer, magnetohydrodynamics, radiation, unsteadiness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2625
3532 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip

Authors: Rama Bhargava, Mania Goyal

Abstract:

The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.

Keywords: Viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3234
3531 Roughness Effects on Nucleate Pool Boiling of R-113 on Horizontal Circular Copper Surfaces

Authors: R. Hosseini, A. Gholaminejad, H. Jahandar

Abstract:

The present paper is an experimental investigation of roughness effects on nucleate pool boiling of refrigerant R113 on horizontal circular copper surfaces. The copper samples were treated by different sand paper grit sizes to achieve different surface roughness. The average surface roughness of the four samples was 0.901, 0.735, 0.65, and 0.09, respectively. The experiments were performed in the heat flux range of 8 to 200kW/m2. The heat transfer coefficient was calculated by measuring wall superheat of the samples and the input heat flux. The results show significant improvement of heat transfer coefficient as the surface roughness is increased. It is found that the heat transfer coefficient of the sample with Ra=0.901 is 3.4, 10.5, and 38.5% higher in comparison with surfaces with Ra of 0.735, 0.65, and 0.09 at heat flux of 170 kW/m2. Moreover, the results are compared with literature data and the well known Cooper correlation.

Keywords: Nucleate Boiling, Pool Boiling, R113, SurfaceRoughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225
3530 Study of Cross Flow Air-Cooling Process via Water-Cooled Wing-Shaped Tubes in Staggered Arrangement at Different Angles of Attack, Part 2: Heat Transfer Characteristics and Thermal Performance Criteria

Authors: Sayed Ahmed E. Sayed Ahmed, Emad Z. Ibrahiem, Osama M. Mesalhy, Mohamed A. Abdelatief

Abstract:

An experimental and numerical study has been conducted to clarify heat transfer characteristics and effectiveness of a cross-flow heat exchanger employing staggered wing-shaped tubes at different angels of attack. The water-side Rew and the air-side Rea were at 5 x 102 and at from 1.8 x 103 to 9.7 x 103, respectively. The tubes arrangements were employed with various angles of attack θ1,2,3 from 0° to 330° at the considered Rea range. Correlation of Nu, St, as well as the heat transfer per unit pumping power (ε) in terms of Rea, design parameters for the studied bundle were presented. The temperature fields around the staggered wing-shaped tubes bundle were predicted by using commercial CFD FLUENT 6.3.26 software package. Results indicated that the heat transfer was increased by increasing the angle of attack from 0° to 45°, while the opposite was true for angles of attack from 135° to 180°. The best thermal performance and hence η of studied bundle was occurred at the lowest Rea and/or zero angle of attack. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

Keywords: Wing-shaped tubes, Cross-flow cooling, Staggered arrangement, and CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
3529 Effect of Magnetic Field on Mixed Convection Boundary Layer Flow over an Exponentially Shrinking Vertical Sheet with Suction

Authors: S. S. P. M. Isa, N. M. Arifin, R. Nazar, N. Bachok, F. M. Ali, I. Pop

Abstract:

A theoretical study has been presented to describe the boundary layer flow and heat transfer on an exponentially shrinking sheet with a variable wall temperature and suction, in the presence of magnetic field. The governing nonlinear partial differential equations are converted into ordinary differential equations by similarity transformation, which are then solved numerically using the shooting method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented through graphs and tables for several sets of values of the parameters. The effects of the governing parameters on the flow and heat transfer characteristics are thoroughly examined.

Keywords: Exponentially shrinking sheet, magnetic field, mixed convection, suction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438
3528 Analysis of Liquid Nitrogen Spray Atomization Characteristics by Internal-Mixing Atomizers

Authors: Zhang Lei, Liu Gaotong

Abstract:

The atomization effect is an important factor of the heat transfer of liquid nitrogen spray. In this paper, two kinds of internal-mixing twin-fluid atomizers were design. According to the fracture theory and fluid mechanics, the model is established to simulate atomization effect. The results showed that: Internal-mixing atomizers, with the liquid nitrogen atomization size from 20um to 40um, have superior performance. Y-jet atomizer spray speed is greater than Multi-jet atomizer, and it can improve the efficiency of heat transfer between the liquid nitrogen and its spray object. Multi-jet atomizer atomization cone angle is about 30°, Y-jet atomizer atomization cone angle is about 20°. During atomizer selection, the size of the heat transfer area should be considered.

Keywords: Atomization, two-phase flow, atomizer, heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2771
3527 Heat and Mass Transfer in MHD Flow of Nanofluids through a Porous Media Due to a Permeable Stretching Sheet with Viscous Dissipation and Chemical Reaction Effects

Authors: Yohannes Yirga, Daniel Tesfay

Abstract:

The convective heat and mass transfer in nanofluid flow through a porous media due to a permeable stretching sheet with magnetic field, viscous dissipation, chemical reaction and Soret effects are numerically investigated. Two types of nanofluids, namely Cu-water and Ag-water were studied. The governing boundary layer equations are formulated and reduced to a set of ordinary differential equations using similarity transformations and then solved numerically using the Keller box method. Numerical results are obtained for the skin friction coefficient, Nusselt number and Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters. Excellent validation of the present numerical results has been achieved with the earlier linearly stretching sheet problems in the literature.

Keywords: Heat and mass transfer, magnetohydrodynamics, nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3742
3526 Effects of Mixed Convection and Double Dispersion on Semi Infinite Vertical Plate in Presence of Radiation

Authors: A.S.N.Murti, D.R.V.S.R.K. Sastry, P.K. Kameswaran, T. Poorna Kantha

Abstract:

In this paper, the effects of radiation, chemical reaction and double dispersion on mixed convection heat and mass transfer along a semi vertical plate are considered. The plate is embedded in a Newtonian fluid saturated non - Darcy (Forchheimer flow model) porous medium. The Forchheimer extension and first order chemical reaction are considered in the flow equations. The governing sets of partial differential equations are nondimensionalized and reduced to a set of ordinary differential equations which are then solved numerically by Fourth order Runge– Kutta method. Numerical results for the detail of the velocity, temperature, and concentration profiles as well as heat transfer rates (Nusselt number) and mass transfer rates (Sherwood number) against various parameters are presented in graphs. The obtained results are checked against previously published work for special cases of the problem and are found to be in good agreement.

Keywords: Radiation, Chemical reaction, Double dispersion, Mixed convection, Heat and Mass transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
3525 Magnetohydrodynamic Mixed Convective Flow in a Cavity

Authors: R.YadollahiFarsani, B. Ghasemi

Abstract:

A magnetohydrodynamic mixed convective flow in a cavity was studied in this paper. The lower surface of cavity was heated from below whereas other walls of the cavity were thermally isolated. The governing two-dimensional flow equations have been solved by using finite volume code. The effects of magnetic field were studied on flow and temperature field and heat transfer performance at a wide range of parameters, Such as Hartmann (0≤Ha≤100) and Reynolds (1≤Re≤100) numbers. The results showed that as Hartman number increases the Nusselt number, representing heat transfer from the cavity decreases.

Keywords: Cavity, Magnetic Field, Mixed Convection, Magnetohydrodynamic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
3524 Experimental Investigation of Heat Transfer and Flow of Nano Fluids in Horizontal Circular Tube

Authors: Abdulhassan Abd. K, Sattar Al-Jabair, Khalid Sultan

Abstract:

We have measured the pressure drop and convective heat transfer coefficient of water – based AL(25nm),AL2O3(30nm) and CuO(50nm) Nanofluids flowing through a uniform heated circular tube in the fully developed laminar flow regime. The experimental results show that the data for Nanofluids friction factor show a good agreement with analytical prediction from the Darcy's equation for single-phase flow. After reducing the experimental results to the form of Reynolds, Rayleigh and Nusselt numbers. The results show the local Nusselt number and temperature have distribution with the non-dimensional axial distance from the tube entry. Study decided that thenNanofluid as Newtonian fluids through the design of the linear relationship between shear stress and the rate of stress has been the study of three chains of the Nanofluid with different concentrations and where the AL, AL2O3 and CuO – water ranging from (0.25 - 2.5 vol %). In addition to measuring the four properties of the Nanofluid in practice so as to ensure the validity of equations of properties developed by the researchers in this area and these properties is viscosity, specific heat, and density and found that the difference does not exceed 3.5% for the experimental equations between them and the practical. The study also demonstrated that the amount of the increase in heat transfer coefficient for three types of Nano fluid is AL, AL2O3, and CuO – Water and these ratios are respectively (45%, 32%, 25%) with insulation and without insulation (36%, 23%, 19%), and the statement of any of the cases the best increase in heat transfer has been proven that using insulation is better than not using it. I have been using three types of Nano particles and one metallic Nanoparticle and two oxide Nanoparticle and a statement, whichever gives the best increase in heat transfer.

Keywords: Newtonian, NUR factor, Brownian motion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
3523 Free Convection in an Infinite Porous Dusty Medium Induced by Pulsating Point Heat Source

Authors: K. Kannan, V. Venkataraman

Abstract:

Free convection effects and heat transfer due to a pulsating point heat source embedded in an infinite, fluid saturated, porous dusty medium are studied analytically. Both velocity and temperature fields are discussed in the form of series expansions in the Rayleigh number, for both the fluid and particle phases based on the mean heat generation rate from source and on the permeability of the porous dusty medium. This study is carried out by assuming the Rayleigh number small and the validity of Darcy-s law. Analytical expressions for both phases are obtained for second order mean in both velocity and temperature fields and evolution of different wave patterns are observed in the fluctuating part. It has been observed that, at the vicinity of the origin, the second order mean flow is influenced only by relaxation time of dust particles and not by dust concentration.

Keywords: Pulsating point heat source, azimuthal velocity, porous dusty medium, Darcy's law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
3522 Effects of Various Substrate Openings for Electronic Cooling under Forced and Natural Convection

Authors: Shen-Kuei Du, Jen-Chieh Chang, Chia-Hong Kao, Tzu-Chen Hung, Chii-Ray Lin

Abstract:

This study experimentally investigates the heat transfer effects of forced convection and natural convection under different substrate openings design. A computational fluid dynamics (CFD) model was established and implemented to verify and explain the experimental results and heat transfer behavior. It is found that different opening position will destroy the growth of the boundary layer on substrates to alter the cooling ability for both forced under low Reynolds number and natural convection. Nevertheless, having too many opening may reduce heat conduction and affect the overall heat transfer performance. This study provides future researchers with a guideline on designing and electronic package manufacturing.

Keywords: electronic cooling, experiment, opening concept, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
3521 Finite Element Solution of Navier-Stokes Equations for Steam Flow and Heat Transfer

Authors: Igor Nedelkovski, Ilios Vilos, Tale Geramitcioski

Abstract:

Computational simulation of steam flow and heat transfer in power plant condensers on the basis of the threedimensional mathematical model for the flow through porous media is presented. In order to solve the mathematical model of steam flow and heat transfer in power plant condensers, the Streamline Upwind Petrov-Galerkin finite element method is applied. By comparison of the results of simulation with experimental results about an experimental condenser, it is confirmed that SUPG finite element method can be successfully applied for solving the three-dimensional mathematical model of steam flow and heat transfer in power plant condensers.

Keywords: Navier-Stokes, FEM, condensers, steam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227
3520 Study on Electrohydrodynamic Capillary Instability with Heat and Mass Transfer

Authors: D. K. Tiwari, Mukesh Kumar Awasthi, G. S. Agrawal

Abstract:

The effect of an axial electric field on the capillary instability of a cylindrical interface in the presence of heat and mass transfer has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, heat transfer capillary number, conductivity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and heat and mass transfer both have stabilizing effect on the stability of the system.

Keywords: Capillary instability, Viscous potential flow, Heat and mass transfer, Axial electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
3519 Quebec Elementary Pre-service Teachers’ Conceptual Representations about Heat and Temperature

Authors: Abdeljalil Métioui

Abstract:

This article identifies the conceptual representations of 128 students enrolled in elementary pre-service teachers’ education in the Province of Quebec, Canada (ages 19-24). To construct their conceptual representations relatively to notions of heat and temperature, we use a qualitative research approach. For that, we distributed them a questionnaire including four questions. The result demonstrates that these students tend to view the temperature as a measure of the hotness of an object or person. They also related the sensation of cold (or warm) to the difference in temperature, and for their majority, the physical change of the matter does not require a constant temperature. These representations are inaccurate relatively to the scientific views, and we will see that they are relevant to the design of teaching strategies based on conceptual conflict.

Keywords: Conceptual representations, heat, temperature, pre-service teachers, elementary school.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 561
3518 Effect of the Cross-Sectional Geometry on Heat Transfer and Particle Motion of Circulating Fluidized Bed Riser for CO2 Capture

Authors: Seungyeong Choi, Namkyu Lee, Dong Il Shim, Young Mun Lee, Yong-Ki Park, Hyung Hee Cho

Abstract:

Effect of the cross-sectional geometry on heat transfer and particle motion of circulating fluidized bed riser for CO2 capture was investigated. Numerical simulation using Eulerian-eulerian method with kinetic theory of granular flow was adopted to analyze gas-solid flow consisting in circulating fluidized bed riser. Circular, square, and rectangular cross-sectional geometry cases of the same area were carried out. Rectangular cross-sectional geometries were analyzed having aspect ratios of 1: 2, 1: 4, 1: 8, and 1:16. The cross-sectional geometry significantly influenced the particle motion and heat transfer. The downward flow pattern of solid particles near the wall was changed. The gas-solid mixing degree of the riser with the rectangular cross section of the high aspect ratio was the lowest. There were differences in bed-to-wall heat transfer coefficient according to rectangular geometry with different aspect ratios.

Keywords: Bed geometry, computational fluid dynamics, circulating fluidized bed riser, heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
3517 Investigation of Heat Transfer by Natural Convection in an Open Channel

Authors: Mahmoud S. Ahmed, Hany A. Mohamed, Mohamed A. Omara, Mohamed F. Abdeen

Abstract:

Experimental study of natural convection heat transfer inside smooth and rough surfaces of vertical and inclined equilateral triangular channels of different inclination angles with a uniformly heated surface are performed. The inclination angle is changed from 15º to 90º. Smooth and rough surface of average roughness (0.02mm) are used and their effect on the heat transfer characteristics are studied. The local and average heat transfer coefficients and Nusselt number are obtained for smooth and rough channels at different heat flux values, different inclination angles and different Rayleigh numbers (Ra) 6.48 × 105 ≤ Ra ≤ 4.78 × 106. The results show that the local Nusselt number decreases with increase of axial distance from the lower end of the triangular channel to a point near the upper end of channel, and then, it slightly increases. Higher values of local Nusselt number for rough channel along the axial distance compared with the smooth channel. The average Nusselt number of rough channel is higher than that of smooth channel by about 8.1% for inclined case at θ = 45o and 10% for vertical case. The results obtained are correlated using dimensionless groups for both rough and smooth surfaces of the inclined and vertical triangular channels.

Keywords: Natural heat transfer convection, constant heat flux, open channels, heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
3516 Heat and Mass Transfer of Triple Diffusive Convection in a Rotating Couple Stress Liquid Using Ginzburg-Landau Model

Authors: Sameena Tarannum, S. Pranesh

Abstract:

A nonlinear study of triple diffusive convection in a rotating couple stress liquid has been analysed. It is performed to study the effect of heat and mass transfer by deriving Ginzburg-Landau equation. Heat and mass transfer are quantified in terms of Nusselt number and Sherwood numbers, which are obtained as a function of thermal and solute Rayleigh numbers. The obtained Ginzburg-Landau equation is Bernoulli equation, and it has been elucidated numerically by using Mathematica. The effects of couple stress parameter, solute Rayleigh numbers, and Taylor number on the onset of convection and heat and mass transfer have been examined. It is found that the effects of couple stress parameter and Taylor number are to stabilize the system and to increase the heat and mass transfer.

Keywords: Couple stress liquid, Ginzburg-Landau model, rotation, triple diffusive convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
3515 Electronics Thermal Management Driven Design of an IP65-Rated Motor Inverter

Authors: Sachin Kamble, Raghothama Anekal, Shivakumar Bhavi

Abstract:

Thermal management of electronic components packaged inside an IP65 rated enclosure is of prime importance in industrial applications. Electrical enclosure protects the multiple board configurations such as inverter, power, controller board components, busbars, and various power dissipating components from harsh environments. Industrial environments often experience relatively warm ambient conditions, and the electronic components housed in the enclosure dissipate heat, due to which the enclosures and the components require thermal management as well as reduction of internal ambient temperatures. Design of Experiments based thermal simulation approach with MOSFET arrangement, Heat sink design, Enclosure Volume, Copper and Aluminum Spreader, Power density, and Printed Circuit Board (PCB) type were considered to optimize air temperature inside the IP65 enclosure to ensure conducive operating temperature for controller board and electronic components through the different modes of heat transfer viz. conduction, natural convection and radiation using Ansys ICEPAK. MOSFET’s with the parallel arrangement, IP65 enclosure molded heat sink with rectangular fins on both enclosures, specific enclosure volume to satisfy the power density, Copper spreader to conduct heat to the enclosure, optimized power density value and selecting Aluminum clad PCB which improves the heat transfer were the contributors towards achieving a conducive operating temperature inside the IP-65 rated Motor Inverter enclosure. A reduction of 52 ℃ was achieved in internal ambient temperature inside the IP65 enclosure between baseline and final design parameters, which met the operative temperature requirements of the electronic components inside the IP-65 rated Motor Inverter.

Keywords: Ansys ICEPAK, Aluminum Clad PCB, IP 65 enclosure, motor inverter, thermal simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
3514 Cooling of Fresh Vegetable Farm Produce: Experimental and Numerical Studies

Authors: Hala Yassine, Hervé Noel, Pascal Le Bideau, Patrick Glouannec

Abstract:

Following harvest, fresh produce needs to be cooled immediately in a room where the air temperature and the relative air humidity are controlled to maintain the produce quality. In this paper, an experimental study for forced air cooling of fresh produce (cauliflower) is performed using a pilot developed within our laboratory. Furthermore, a numerical simulation of spherical produces, taking into account the aerodynamic aspect and also the heat transfer in the produce and in the air, was carried out using a finite element method. At the end of this communication, experimental results are presented and compared with the simulation.

Keywords: Cauliflower, Forced air cooling, Heat transfer, Numerical model, Tunnel of air.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
3513 The Role of Periodic Vortex Shedding in Heat Transfer Enhancement for Transient Pulsatile Flow Inside Wavy Channels

Authors: Esam M. Alawadhi, Raed I. Bourisli

Abstract:

Periodic vortex shedding in pulsating flow inside wavy channel and the effect it has on heat transfer are studied using the finite volume method. A sinusoidally-varying component is superimposed on a uniform flow inside a sinusoidal wavy channel and the effects on the Nusselt number is analyzed. It was found that a unique optimum value of the pulsation frequency, represented by the Strouhal number, exists for Reynolds numbers ranging from 125 to 1000. Results suggest that the gain in heat transfer is related to the process of vortex formation, movement about the troughs of the wavy channel, and subsequent ejection/destruction through the converging section. Heat transfer is the highest when the frequencies of the pulsation and vortex formation approach being in-phase. Analysis of Strouhal number effect on Nu over a period of pulsation substantiates the proposed physical mechanism for enhancement. The effect of changing the amplitude of pulsation is also presented over a period of pulsation, showing a monotonic increase in heat transfer with increasing amplitude. The 60% increase in Nusselt number suggests that sinusoidal fluid pulsation can an effective method for enhancing heat transfer in laminar, wavy-channel flows.

Keywords: Vortex shedding, pulsating flow, wavy channel, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
3512 Numerical Investigation of Thermal-Hydraulic Performance of a Flat Tube in Cross-Flow of Air

Authors: Hamidreza Bayat, Arash Mirabdolah Lavasani, Meysam Bolhasani, Sajad Moosavi

Abstract:

Heat transfer from flat tube is studied numerically. Reynolds number is defined base on equivalent circular tube which is varied in range of 100 to 300. In these range of Reynolds number flow is considered to be laminar, unsteady, and incompressible. Equations are solved by using finite volume method. Results show that increasing l/D from 1 to 2 has insignificant effect on heat transfer and Nusselt number of flat tube is slightly lower than circular tube. However, thermal-hydraulic performance of flat tube is up to 2.7 times greater than circular tube.

Keywords: Laminar flow, flat tube, convective heat transfer, heat exchanger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2640
3511 Hall Effect on MHD Mixed Convection Flow of Viscous-Elastic Incompressible Fluid Past of an Infinite Porous Medium

Authors: T. K. Das, N. Senapatil, R. K. Dhal

Abstract:

An unsteady mixed free convection MHD flow of elastic-viscous incompressible fluid past an infinite vertical porous flat plate is investigated when the presence of heat Source/sink, temperature and concentration are assumed to be oscillating with time and hall effect. The governing equations are solved by complex variable technique. The expressions for the velocity field, temperature field and species concentration are demonstrated in graphs. The effects of the Prandtl number, the Grashof number, modified Grashof number, the Schimidt number, the Hall parameter, Elastic parameter & Magnetic parameter are discussed.

Keywords: MHD, Mixed convective, Elastic-viscous incompressible, rotational, heat transfer, mass transfer, suction and injection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
3510 Reliable One-Dimensional Model of Two-Dimensional Insulated Oval Duct Considering Heat Radiation

Authors: King-Leung Wong, Wen-Lih Chen, Yu-feng Chang

Abstract:

The reliable results of an insulated oval duct considering heat radiation are obtained basing on accurate oval perimeter obtained by integral method as well as one-dimensional Plane Wedge Thermal Resistance (PWTR) model. This is an extension study of former paper of insulated oval duct neglecting heat radiation. It is found that in the practical situations with long-short-axes ratio a/b <= 5/1, heat transfer rate errors are within 1.2 % by comparing with accurate two-dimensional numerical solutions for most practical dimensionless insulated thickness (t/R2 <= 0.5). On the contrary, neglecting the heat radiation effect is likely to produce very big heat transfer rate errors of non-insulated (E>43% at t/R2=0) and thin-insulated (E>4.5% while t/R2<= 0.1) oval ducts in situations of ambient air with lower external convection heat coefficients and larger surface emissivity.

Keywords: Heat convection, heat radiation, oval duct, PWTR model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
3509 Constructal Enhancement of Fins Design Integrated to Phase Change Materials

Authors: Varun Joshi, Manish K. Rathod

Abstract:

The latent heat thermal energy storage system is a thrust area of research due to exuberant thermal energy storage potential. The thermal performance of PCM is significantly augmented by installation of the high thermal conductivity fins. The objective of the present study is to obtain optimum size and location of the fins to enhance diffusion heat transfer without altering overall melting time. Hence, the constructal theory is employed to eliminate, resize, and re-position the fins. A numerical code based on conjugate heat transfer coupled enthalpy porosity approached is developed to solve Navier-Stoke and energy equation.The numerical results show that the constructal fin design has enhanced the thermal performance along with the increase in the overall volume of PCM when compared to conventional. The overall volume of PCM is found to be increased by half of total of volume of fins. The elimination and repositioning the fins at high temperature gradient from low temperature gradient is found to be vital.

Keywords: Constructal theory, enthalpy porosity approach, phase change materials, fins.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
3508 Studying the Temperature Field of Hypersonic Vehicle Structure with Aero-Thermo-Elasticity Deformation

Authors: Geng Xiangren, Liu Lei, Gui Ye-Wei, Tang Wei, Wang An-ling

Abstract:

The malfunction of thermal protection system (TPS) caused by aerodynamic heating is a latent trouble to aircraft structure safety. Accurately predicting the structure temperature field is quite important for the TPS design of hypersonic vehicle. Since Thornton’s work in 1988, the coupled method of aerodynamic heating and heat transfer has developed rapidly. However, little attention has been paid to the influence of structural deformation on aerodynamic heating and structural temperature field. In the flight, especially the long-endurance flight, the structural deformation, caused by the aerodynamic heating and temperature rise, has a direct impact on the aerodynamic heating and structural temperature field. Thus, the coupled interaction cannot be neglected. In this paper, based on the method of static aero-thermo-elasticity, considering the influence of aero-thermo-elasticity deformation, the aerodynamic heating and heat transfer coupled results of hypersonic vehicle wing model were calculated. The results show that, for the low-curvature region, such as fuselage or center-section wing, structure deformation has little effect on temperature field. However, for the stagnation region with high curvature, the coupled effect is not negligible. Thus, it is quite important for the structure temperature prediction to take into account the effect of elastic deformation. This work has laid a solid foundation for improving the prediction accuracy of the temperature distribution of aircraft structures and the evaluation capacity of structural performance.

Keywords: Aero-thermo-elasticity, elastic deformation, structural temperature, multi-field coupling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858
3507 A Numerical Study of Single-phase Forced Convective Heat Transfer in Tube in Tube Heat Exchangers

Authors: P. Mohajeri Khameneh, I. Mirzaie, N. Pourmahmoud, M. Rahimi, S. Majidyfar

Abstract:

Three dimensional simulations in tube in tube heat exchangers are investigated numerically in this study. In these simulations forced convective heat transfer and laminar flow of single-phase water are considered. In order to measure heat transfer parameters in these heat exchangers, FLUENT CFD Solver is used in this numerical method. For the purpose of creating geometry and exert boundary and initial conditions in the present model, finite volume method in Computational Fluid Dynamics is used in this study. In the present study, at each Z-location, variation of local temperatures, heat flux and Nusselt number at the whole tube is investigated in detail. Thereafter, averaged computational Nusselt number in this model is calculated. In addition, conceivable pressure drops have been obtained at each Z-location in this model. Then, pressure drop values in the present model are explored. Finally, all the numerical results for this kind of heat exchanger will be discussed precisely.

Keywords: Heat exchanger, Laminar flow, CFD, Nusseltnumber, Tube in tube, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
3506 Reducing Pressure Drop in Microscale Channel Using Constructal Theory

Authors: K. X. Cheng, A. L. Goh, K. T. Ooi

Abstract:

The effectiveness of microchannels in enhancing heat transfer has been demonstrated in the semiconductor industry. In order to tap the microscale heat transfer effects into macro geometries, overcoming the cost and technological constraints, microscale passages were created in macro geometries machined using conventional fabrication methods. A cylindrical insert was placed within a pipe, and geometrical profiles were created on the outer surface of the insert to enhance heat transfer under steady-state single-phase liquid flow conditions. However, while heat transfer coefficient values of above 10 kW/m2·K were achieved, the heat transfer enhancement was accompanied by undesirable pressure drop increment. Therefore, this study aims to address the high pressure drop issue using Constructal theory, a universal design law for both animate and inanimate systems. Two designs based on Constructal theory were developed to study the effectiveness of Constructal features in reducing the pressure drop increment as compared to parallel channels, which are commonly found in microchannel fabrication. The hydrodynamic and heat transfer performance for the Tree insert and Constructal fin (Cfin) insert were studied using experimental methods, and the underlying mechanisms were substantiated by numerical results. In technical terms, the objective is to achieve at least comparable increment in both heat transfer coefficient and pressure drop, if not higher increment in the former parameter. Results show that the Tree insert improved the heat transfer performance by more than 16 percent at low flow rates, as compared to the Tree-parallel insert. However, the heat transfer enhancement reduced to less than 5 percent at high Reynolds numbers. On the other hand, the pressure drop increment stayed almost constant at 20 percent. This suggests that the Tree insert has better heat transfer performance in the low Reynolds number region. More importantly, the Cfin insert displayed improved heat transfer performance along with favourable hydrodynamic performance, as compared to Cfinparallel insert, at all flow rates in this study. At 2 L/min, the enhancement of heat transfer was more than 30 percent, with 20 percent pressure drop increment, as compared to Cfin-parallel insert. Furthermore, comparable increment in both heat transfer coefficient and pressure drop was observed at 8 L/min. In other words, the Cfin insert successfully achieved the objective of this study. Analysis of the results suggests that bifurcation of flows is effective in reducing the increment in pressure drop relative to heat transfer enhancement. Optimising the geometries of the Constructal fins is therefore the potential future study in achieving a bigger stride in energy efficiency at much lower costs.

Keywords: Constructal theory, enhanced heat transfer, microchannel, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
3505 Heat Transfer from Two Cam Shaped Cylinders in Tandem Arrangement

Authors: Arash Mir Abdolah Lavasani, Hamidreza Bayat

Abstract:

Heat transfer from two cam shape cylinder in tandem arrangement had been studied numerically. The distance between the centers of cylinders (L) is allowed to vary to change the longitudinal pitch ratio (L/Deq). The equivalent diameter of the cylinder (Deq) is 27.6 mm and longitudinal pitch ratio varies in range 2<L/Deq<6. The Reynolds number based on equivalent circular cylinder are within 50< Reeq <300. Results show that Nusselt number of second cylinder increases about 5 to 33 times when longitudinal pitch ratio increases from 2 to 6.

Keywords: Cam Shaped, tandem Cylinders, Numerical, Heat Transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511