
 

 

  
Abstract—A magnetohydrodynamic mixed convective flow in a 

cavity was studied in this paper. The lower surface of cavity was 

heated from below whereas other walls of the cavity were thermally 

isolated. The governing two-dimensional flow equations have been 

solved by using finite volume code. The effects of magnetic field 

were studied on flow and temperature field and heat transfer 

performance at a wide range of parameters, Such as Hartmann 

(0≤Ha≤100) and Reynolds (1≤Re≤100) numbers. The results showed 

that as Hartman number increases the Nusselt number, representing 

heat transfer from the cavity decreases. 

 

Keywords—Cavity, Magnetic Field, Mixed Convection, 
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I. INTRODUCTION 

HE study of mixed convection of electrically-conducting 

fluids in the magnetohydrodynamic (MHD) devices such 

as coolers of nuclear reactors, thermal insulators and micro-

electronic devices should account for the effect of a transverse 

magnetic field on the fluid flow and the heat transfer 

mechanism. It has been found that the fluid flow experiences a 

Lorentz force due to the influence of the magnetic field. There 

has been an increasing interest to understand the magneto 

hydrodynamic convective heat transfer of electrically-

conducting fluids in cavities [1]-[5]. The common finding of 

all these studies is that the magnetic field can suppress the 

convective flow field within the cavity and that the magnetic 

field is one of the important factors in the examination of the 

thermal performance of the cavity. M.Pirmohammadi et al. [6] 

numerically investigated the characteristic of free convection 

heat transfer in a cavity that was under the influence of 

transverse magnetohydrodynamic effects. Their study showed 

as the value of Hartman number increases, the free 

convection heat transfer into the cavity reduces. Despite the 

previous efforts, some aspects of fundamental knowledge of 

magnetohydrodynamic mixed convection heat transfer in 

cavities were still unknown; therefore this work was concerned 

with the effects of magnetic field on the laminar mixed 

convection flow in a cavity. The results were presented for a 

wide range of values of magnetic field strength. Results were 

presented graphically in terms of streamlines and isothermal 

lines. Finally the average Nusselt number at the heated surface 

of the cavity was calculated.  
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Fig. 1 Schematic diagram of the problem 

II. MODEL SPECIFICATION 

  The geometry considered in this study was a two-dimensional 

horizontal cavity with (Fig. 1). The length of the cavity ( L ) 

was considered as the reference length in the dimensional 

analysis. The width of the cavity was equal to its length. The 

inlet and the outlet of the cavity were located at a distance of 

L/4 and 3L/4 respectively from the bottom of the cavity. The 

height of the inflow and outflow openings is (L/4). Air was 

introduced to the cavity at a uniform velocity (u0) and 

temperature (Tc). The flow was assumed to be laminar and 

incompressible with the Prandtl number of Pr=0.71. The 

radiation effects were assumed to be negligible. a length of L/2 

of the cavity’s bottom wall was heated at a constant 

temperature (Th). The rest walls of the cavity were thermally 

insulated. A uniform magnetic field with the strength of B0 was 
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TABLE I 

SYMBOLS AND UNITS  

Symbol Quantity  

g gravitational acceleration, [m/s2]  

P pressure [Pa]  

T temperature [oC]  

L cavity Width [m]  

Nu local Nusselt number  

Num average Nusselt number  

B0 magnetic field strength  

Pr Prandtl number, ν/α  

Gr Grashof number, gβ∆θL3/ν2  

Re 

Ha 

Reynolds number, uoL/ν 

Hartman number, ( νρσ /LB0
) 

 

x, y  Cartesian coordinates (m)  

X, Y  non dimensional coordinates  

u, v velocity components (ms−1)  

U, V  dimensionless velocities in X and Y direction(m/s)  
α effective thermal diffusivity fluid [m2s−1]  
β coefficient of thermal expansion of fluid [K−1]  
∆θ temperature difference[K−1]  
θ dimensionless temperature, T−Tc/Th−Tc  
µ 

τ 

ρ 

effective dynamic viscosity [Pa s−1]  

Dimensionless time 

fluid density [kgm−3] 
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applied in the same direction of the inflow. All the thermo-

physical properties of the air flow were assumed constant 

except for the variation in density with temperature, where a 

Boussinesq approximation was applied. Fully-developed 

conditions were considered at the exit section of the cavity and 

no-slip boundary conditions (U=V=0) were assumed on all the 

walls. 

III. EQUATIONS 

   The nature of the magnetohydrodynamic flows includes both 

fluid dynamics (Navier–Stokes) and electrodynamics 

(Maxwell) equations. Lorentz force and Ohm’s law have been 

considered in these equations. The Ohm's law was taken into 

consideration and the magnetic Reynolds number of the flow 

was taken to be small so that the flow induced distortion of the 

applied magnetic field can be neglected. The additional field 

induced by the fluid motion was weak compared with respect 

to the applied field. The non-dimensional forms of continuity, 

momentum and energy equations describing the flow under 

Boussinesq approximation are as follows: 
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In the above equations, the following non-dimensional 

parameters are used: 
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The term on the right-hand side of Eq. (3) includes the 

Lorentz force induced by the interaction of the magnetic field 

with the convective motion. The boundary conditions for the 

present problem were specified as follows: 

 

At the inlet: U = 1, V = 0, θ = 0, 

At the outlet: convective boundary condition: 

0V,0Xθ/,0XU/ ==∂∂=∂∂ , 

At top wall of channel: U = 0, V = 0, θ = 0,               (6) 

At the other walls: U = 0, V = 0, 0NT/ =∂∂ , 

At the bottom of cavity: U = V = 0, θ = 1,  

 

where N is the non-dimensional distances in both X and Y 

directions acting normal to the surface. The local Nusselt 

number at the heated surface was calculated by using 

Y/-Nu ∂θ∂= . The average Nusselt number was, therefore, 

obtained by integrating the Nusselt number over the cavity’s 

bottom wall as: 

 ∫ ∂∂−= YL /)/2(Nu m θ  

IV. METHOD OF SOLUTION 

The governing equations presented in Eqs. (1)-(4) along 

with the boundary conditions (Eq. (6)) were numerically 

solved by employing the finite volume method and using the 

staggered grid arrangement. The power law scheme, which 

was a combination of the central difference and the upwind 

staggered grid system, in which the velocity components are 

stored midway between the scalar storage locations, was used. 

The solution of the fully-coupled discretized equations was 

obtained iteratively using the TDMA method. In order to get 

the accurate solutions, the 10
-6

 convergence condition was 

considered. 

V. GRID INDEPENDENCE 

The grid study test was performed at Gr=10
4
, Ha =50 for 

deferent Reynolds number. Table II shows the dependence of 

the Nusselt quantities on the grid size. The results show that a 

grid size of 220×220 is adequate to ensure the grid 

independency.  
TABLE II 

 GRID INDEPENDENCE STUDY FOR HA=50 AND GR = 104 

 

 

 

 
Fig. 2 Left, Streamlines and Right, Isotherms for (A)Ha=0,(B) Ha=50 

and (C)Ha=100, whereas Re=1 and Gr= 104 

Grid 150×150 170×170 200×200 220×220 240×240 

Re=1 0.98 1.24 1.5 1.62 1.65 

Re=10 1.05 1.36 1.75 1.88 1.94 

Re=100 1.98 2.14 3.14 3.26 3.34 

schemes, was used to discrete the convection terms [7]. A 
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Fig. 3 Left, Streamlines and Right, Isotherms for (A) Ha=0,            

(B) Ha=50 and, (C) Ha=100, at Re=10 and Gr= 104 

VI. RESULTS AND DISCUSSIONS  

 The results of the numerical analysis of the magneto 

hydrodynamic mixed convection in the channel with an open 

cavity for a range of values of the Reynolds number 

( 100Re1 ≤≤ ) and the Hartmann number ( 1000 ≤≤ Ha ) at 

Grashof number (Gr= 10
4
), are presented and the flow and 

temperature fields and the heat transfer performance of the 

channel are examined.  

 

 

 

 
Fig.  4 Left, Streamlines and Right, Isotherms for (A) Ha=0,            

(B) Ha=50 and, (C) Ha=100, at Re=100 and Gr= 104 

 

 In this section the influence of the Hartmann number 

( 10050,0,Ha = ) on the flow and temperature fields for 

Gr=10
4
 and three values of the Reynolds number (Re=1, 

10,100) are presented. Fig. 2 illustrates the streamlines and 

isotherms for 1Re = , where the buoyancy effects dominate the 

flow field in the cavity and the heat transfer is mainly due to 

natural convection. The results show that the buoyancy 

induced vortices in the cavity in the absence of the magnetic 

field ( 0Ha = ). The vortices, however, start to decrease and 

the streamlines are extended between the inlet and the outlet of 

the cavity as the magnetic field is applied ( 50Ha = ). The size 

of the vortices decreases and mainstream flow in cavity get 

strong as the Hartmann number increases to 100Ha = . The 

isotherms show thin thermal boundary layers in the vicinity of 

the cavity’s bottom wall for 0Ha = . As the Hartmann number 

increases, the isotherms distribute more uniformly and 

smoothly between the bottom wall of the cavity and the top 

wall. 

Ha
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Fig. 5 Effect of Hartman number on average Nusselt number in the 

cavity for variant Re, at Gr =104   

 

Fig. 3 shows the streamlines and isotherms for 10Re = , 

where the contribution of the forced convection in the flow and 

temperature fields increases. Tow vortices are evident inside 

of the cavity for 0Ha = . When the Hartmann number 

increases, both of them are vanished due to the effect of the 

magnetic field. The isotherms distribution is also affected by 
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the effect of the magnetic field. Less bend of the isotherms 

lines is observed as the Hartmann number increases.  

Fig. 4 shows the streamlines and isotherms for 100Re = , 

where the forced convection dominates the flow and 

temperature fields.  In the absence of the magnetic field, a 

large circulating cell is observed above mainstream flow in the 

cavity. As the Hartmann number increases, the vortex is 

vanished due to the effect of the magnetic field whereas the 

strength of mainstream flow increases. The density of the 

stratified isotherms near the bottom wall of the cavity 

decreases as the Hartmann number increases. 

It has been observed that for all values of the Reynolds 

number, the intensity of isotherms in the vicinity of the 

cavity’s bottom wall decreases as the Hartmann number 

increases. This suggests lower heat transfer rates for the cavity 

as the strength of the magnetic field increases. In order to 

examine the cavity’s heat transfer performance, the values of 

the average Nusselt number (Num) at different Hartmann, 

Reynolds and Grashof numbers are presented in Fig. 5.The 

effect of magnetic field on the average Nusselt number (Num) 

for governing parameters Ha, Gr and Re is shown in Fig 5. It is 

shown for various Reynolds number, the value of Num 

decreases as Hartman number increases.  

 
TABLE II 

 AVERAGE NUSSELT NUMBER DECREASE PERCENT AT RE=100 AND GR = 10 
4 

 Ha=0 Ha=25 Ha=50 Ha=75 Ha=100 

Re =100 4.38 3.54 3.28 3.26 3.15 

Decrease of Average 

Nusselt number (%) 
19 25 26 28 

 

Also it’s clear as the Reynolds number increases the Nusselt 

numbers, representing heat transfer from bottom of the cavity, 

increases. 

In order to distinct the effect of magnetic field on average 

Nusselt number, the percent of decrease in average Nusselt 

numbers, at Re=100 and Gr=10
4
 showed in table III. It’s 

resulted that the effect of magnetic on mixed convection is so 

noticeable that magnetic field can’t be undeniable in mixed 

convection heat transfer problems. 
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