**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30124

##### Constructal Enhancement of Fins Design Integrated to Phase Change Materials

**Authors:**
Varun Joshi,
Manish K. Rathod

**Abstract:**

**Keywords:**
Constructal theory,
enthalpy porosity approach,
phase change materials,
fins.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1316404

**References:**

[1] Zalba, B., Marín, J. M., Cabeza, L.F. and Mehling, H., 2003. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied thermal engineering, 23(3), pp.251- 283.

[2] Zhang, Y. and Faghri, A., 1996. Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube. International Journal of Heat and Mass Transfer, 39(15), pp.3165-3173.

[3] Velraj, R. V. S. R., Seeniraj, R. V., Hafner, B., Faber, C. and Schwarzer, K., 1999. Heat transfer enhancement in a latent heat storage system. Solar energy, 65(3), pp.171-180.

[4] Arce, P., Castellón, C., Castell, A. and Cabeza, L. F., 2012. Use of microencapsulated PCM in buildings and the effect of adding awnings. Energy and Buildings, 44, pp.88-93.

[5] Ho, C. J., Chou, W. L. and Lai, C. M., 2014. Application of a watersaturated MEPCM-PV for reducing winter chilling damage on aqua farms. Solar Energy, 108, pp.135-145.

[6] Choi, J. C. and Kim, S. D., 1992. Heat-transfer characteristics of a latent heat storage system using MgCl2• 6H2O. Energy, 17(12), pp.1153- 1164.

[7] Kim, S. and Drzal, L. T., 2009. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nano platelets. Solar Energy Materials and Solar Cells, 93(1), pp.136- 142.

[8] Dutil, Y., Rousse, D. R., Salah, N. B., Lassue, S. and Zalewski, L., 2011. A review on phase-change materials: mathematical modeling and simulations. Renewable and sustainable Energy reviews, 15(1), pp.112- 130.

[9] Yang, X., Lu, Z., Bai, Q., Zhang, Q., Jin, L. and Yan, J., 2017. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins. Applied Energy, 202, pp.558-570.

[10] Jmal, I. and Baccar, M., 2015. Numerical study of PCM solidification in a finned tube thermal storage including natural convection. Applied Thermal Engineering, 84, pp.320-330.

[11] Gharebaghi, M. and Sezai, I., 2007. Enhancement of heat transfer in latent heat storage modules with internal fins. Numerical Heat Transfer, Part A: Applications, 53(7), pp.749-765.

[12] Lacroix, M. and Benmadda, M., 1997. Numerical simulation of natural convection-dominated melting and solidification from a finned vertical wall. Numerical Heat Transfer, Part A Applications, 31(1), pp.71-86.

[13] Rathod, M. K. and Banerjee, J., 2015. Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins. Applied thermal engineering, 75, pp.1084-1092.

[14] Kamkari, B. and Shokouhmand, H., 2014. Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins. International Journal of Heat and Mass Transfer, 78, pp.839- 851.

[15] Voller, V. R. and Prakash, C., 1987. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. International Journal of Heat and Mass Transfer, 30(8), pp.1709-1719.

[16] Brent, A. D., Voller, V. R. and Reid, K. T. J., 1988. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numerical Heat Transfer, Part A Applications, 13(3), pp.297-318.

[17] Carman, P. C., 1937. Fluid flow through granular beds. Transactions- Institution of Chemical Engineeres, 15, pp.150-166.

[18] Kheirabadi, A. C. and Groulx, D., 2015. The effect of the mushy-zone constant on simulated phase change heat transfer. In ICHMT Digital Library Online. Begel House Inc.

[19] Shmueli, H., Ziskind, G. and Letan, R., 2010. Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments. International Journal of Heat and Mass Transfer, 53(19), pp.4082-4091.

[20] Augspurger, M. and Udaykumar, H. S., 2016. A Cartesian grid solver for simulation of a phase-change material (PCM) solar thermal storage device. Numerical Heat Transfer, Part B: Fundamentals, 69(3), pp.179- 196.

[21] Patankar, S. V. and Spalding, D. B., 1972. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International journal of heat and mass transfer, 15(10), pp.1787-1806.

[22] Bejan, A., 1997. Constructal-theory network of conducting paths for cooling a heat generating volume. International Journal of Heat and Mass Transfer, 40(4), pp.799813-811816.

[23] Wang, A. H., Liang, X. G. and Ren, J. X., 2006. Constructal enhancement of heat conduction with phase change. International Journal of Thermophysics, 27(1), pp.126-138.

[24] Kalbasi, R. and Salimpour, M. R., 2015. Constructal design of horizontal fins to improve the performance of phase change material rectangular enclosures. Applied Thermal Engineering, 91, pp.234-244.

[25] Kalbasi, R. and Salimpour, M. R., 2015. Constructal design of phase change material enclosures used for cooling electronic devices. Applied Thermal Engineering, 84, pp.339-349.

[26] Rathod, M. K. and Banerjee, J., 2014. Experimental investigations on latent heat storage unit using paraffin wax as phase change material. Experimental Heat Transfer, 27(1), pp.40-55.