Constructal Enhancement of Fins Design Integrated to Phase Change Materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
Constructal Enhancement of Fins Design Integrated to Phase Change Materials

Authors: Varun Joshi, Manish K. Rathod

Abstract:

The latent heat thermal energy storage system is a thrust area of research due to exuberant thermal energy storage potential. The thermal performance of PCM is significantly augmented by installation of the high thermal conductivity fins. The objective of the present study is to obtain optimum size and location of the fins to enhance diffusion heat transfer without altering overall melting time. Hence, the constructal theory is employed to eliminate, resize, and re-position the fins. A numerical code based on conjugate heat transfer coupled enthalpy porosity approached is developed to solve Navier-Stoke and energy equation.The numerical results show that the constructal fin design has enhanced the thermal performance along with the increase in the overall volume of PCM when compared to conventional. The overall volume of PCM is found to be increased by half of total of volume of fins. The elimination and repositioning the fins at high temperature gradient from low temperature gradient is found to be vital.

Keywords: Constructal theory, enthalpy porosity approach, phase change materials, fins.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1316404

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921

References:


[1] Zalba, B., Marín, J. M., Cabeza, L.F. and Mehling, H., 2003. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied thermal engineering, 23(3), pp.251- 283.
[2] Zhang, Y. and Faghri, A., 1996. Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube. International Journal of Heat and Mass Transfer, 39(15), pp.3165-3173.
[3] Velraj, R. V. S. R., Seeniraj, R. V., Hafner, B., Faber, C. and Schwarzer, K., 1999. Heat transfer enhancement in a latent heat storage system. Solar energy, 65(3), pp.171-180.
[4] Arce, P., Castellón, C., Castell, A. and Cabeza, L. F., 2012. Use of microencapsulated PCM in buildings and the effect of adding awnings. Energy and Buildings, 44, pp.88-93.
[5] Ho, C. J., Chou, W. L. and Lai, C. M., 2014. Application of a watersaturated MEPCM-PV for reducing winter chilling damage on aqua farms. Solar Energy, 108, pp.135-145.
[6] Choi, J. C. and Kim, S. D., 1992. Heat-transfer characteristics of a latent heat storage system using MgCl2• 6H2O. Energy, 17(12), pp.1153- 1164.
[7] Kim, S. and Drzal, L. T., 2009. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nano platelets. Solar Energy Materials and Solar Cells, 93(1), pp.136- 142.
[8] Dutil, Y., Rousse, D. R., Salah, N. B., Lassue, S. and Zalewski, L., 2011. A review on phase-change materials: mathematical modeling and simulations. Renewable and sustainable Energy reviews, 15(1), pp.112- 130.
[9] Yang, X., Lu, Z., Bai, Q., Zhang, Q., Jin, L. and Yan, J., 2017. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins. Applied Energy, 202, pp.558-570.
[10] Jmal, I. and Baccar, M., 2015. Numerical study of PCM solidification in a finned tube thermal storage including natural convection. Applied Thermal Engineering, 84, pp.320-330.
[11] Gharebaghi, M. and Sezai, I., 2007. Enhancement of heat transfer in latent heat storage modules with internal fins. Numerical Heat Transfer, Part A: Applications, 53(7), pp.749-765.
[12] Lacroix, M. and Benmadda, M., 1997. Numerical simulation of natural convection-dominated melting and solidification from a finned vertical wall. Numerical Heat Transfer, Part A Applications, 31(1), pp.71-86.
[13] Rathod, M. K. and Banerjee, J., 2015. Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins. Applied thermal engineering, 75, pp.1084-1092.
[14] Kamkari, B. and Shokouhmand, H., 2014. Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins. International Journal of Heat and Mass Transfer, 78, pp.839- 851.
[15] Voller, V. R. and Prakash, C., 1987. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. International Journal of Heat and Mass Transfer, 30(8), pp.1709-1719.
[16] Brent, A. D., Voller, V. R. and Reid, K. T. J., 1988. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numerical Heat Transfer, Part A Applications, 13(3), pp.297-318.
[17] Carman, P. C., 1937. Fluid flow through granular beds. Transactions- Institution of Chemical Engineeres, 15, pp.150-166.
[18] Kheirabadi, A. C. and Groulx, D., 2015. The effect of the mushy-zone constant on simulated phase change heat transfer. In ICHMT Digital Library Online. Begel House Inc.
[19] Shmueli, H., Ziskind, G. and Letan, R., 2010. Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments. International Journal of Heat and Mass Transfer, 53(19), pp.4082-4091.
[20] Augspurger, M. and Udaykumar, H. S., 2016. A Cartesian grid solver for simulation of a phase-change material (PCM) solar thermal storage device. Numerical Heat Transfer, Part B: Fundamentals, 69(3), pp.179- 196.
[21] Patankar, S. V. and Spalding, D. B., 1972. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International journal of heat and mass transfer, 15(10), pp.1787-1806.
[22] Bejan, A., 1997. Constructal-theory network of conducting paths for cooling a heat generating volume. International Journal of Heat and Mass Transfer, 40(4), pp.799813-811816.
[23] Wang, A. H., Liang, X. G. and Ren, J. X., 2006. Constructal enhancement of heat conduction with phase change. International Journal of Thermophysics, 27(1), pp.126-138.
[24] Kalbasi, R. and Salimpour, M. R., 2015. Constructal design of horizontal fins to improve the performance of phase change material rectangular enclosures. Applied Thermal Engineering, 91, pp.234-244.
[25] Kalbasi, R. and Salimpour, M. R., 2015. Constructal design of phase change material enclosures used for cooling electronic devices. Applied Thermal Engineering, 84, pp.339-349.
[26] Rathod, M. K. and Banerjee, J., 2014. Experimental investigations on latent heat storage unit using paraffin wax as phase change material. Experimental Heat Transfer, 27(1), pp.40-55.