Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30680
Effect of Particle Size in Aviation Turbine Fuel-Al2O3 Nanofluids for Heat Transfer Applications

Authors: Sandipkumar Sonawane, Upendra Bhandarkar, Bhalchandra Puranik, S. Sunil Kumar


The effect of Alumina nanoparticle size on thermophysical properties, heat transfer performance and pressure loss characteristics of Aviation Turbine Fuel (ATF)-Al2O3 nanofluids is studied experimentally for the proposed application of regenerative cooling of semi-cryogenic rocket engine thrust chambers. Al2O3 particles with mean diameters of 50 nm or 150 nm are dispersed in ATF. At 500C and 0.3% particle volume concentration, the bigger particles show increases of 17% in thermal conductivity and 55% in viscosity, whereas the smaller particles show corresponding increases of 21% and 22% for thermal conductivity and viscosity respectively. Contrary to these results, experiments to study the heat transfer performance and pressure loss characteristics show that at the same pumping power, the maximum enhancement in heat transfer coefficient at 500C and 0.3% concentration is approximately 47% using bigger particles, whereas it is only 36% using smaller particles.

Keywords: viscosity, Nanofluids, Heat transfer performance, Thermalconductivity

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114


[1] S.U.S. Choi, J.A.Eastman, "Enhancing thermal conductivity of fluids with nanoparticles", ASME Int. Mech. Engg. Congress and Exh., Nov. 12-17, 1995, San Francisco, CA (US).
[2] M.Chandrasekar, S.Suresh, A.Chandra Bose, "Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid", Exp. Therm. Fluid Sci., vol. 34, pp. 210-216, Feb. 2010.
[3] D.Yoo, K.S.Hong, H.Yang, "Study of thermal conductivity of nanofluids for the applications of heat transfer fluids", Thermochim. Acta, vol. 455, pp. 66-69, Apr. 2007.
[4] X. Wang, X. Xu, S.U.S. Choi, "Thermal conductivity of nanoparticlesfluid mixture", J. Thermophys. Heat Transfer, vol. 13(4), pp. 474-480, Oct.-Dec. 1999.
[5] S.K.Das, N.Putra, P.Theisen, W.Roetzel, "Temperature dependence of thermal conductivity enhancement of nanofluids", J. Heat Transfer, vol. 125, pp. 567-574, Aug. 2003.
[6] B.C.Pak, Y.I.Cho, "Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles", Exp. Heat Transfer, vol. 11, pp.151-170, 1998.
[7] Y.Xuan, Q.Li, "Investigation on convective heat transfer and flow features of nanofluids", ASME. J. Heat Transfer, vol. 125, pp. 151-155, Feb. 2003.
[8] W. Duangthongsuk, S.Wongwises, "An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime", Int. J. Heat Mass Transfer, vol. 53, pp. 334-344, Jan. 2010.
[9] B. Farajollahi, S.Gh.Etemad, M.Hojjat, "Heat transfer of nanofluids in a shell and tube heat exchanger", Int. J. Heat Mass Transfer, vol. 53, pp. 12-17, Jan. 2010.
[10] W.Yu, D.M.France, J.L.Routbort, S.U.S.Choi, "Review and comparison of nanofluid thermal conductivity and heat transfer enhancements", Heat Transfer Engg., vol. 29(5), pp. 432-460, 2008.
[11] S.M.S. Murshed, K.C.Leong, C.Yang, "Enhanced thermal conductivity of TiO2-water based nanofluids", Int. J. Therm. Sci., vol. 44, pp. 367- 373, Apr. 2005.
[12] C. Codreanu, N. Codreanu, V. Obreja, "An experimental approach of the hot wire method for measurement of the thermal conductivity", pp. 359- 362, IEEE, 2006.
[13] J.J.De Groot, J.Kestin, H.Sookiazian, "Instrument to measure thermal conductivity of gases", Physica, vol. 75, pp., 454-482, 1974.
[14] F.P.Incropera, D.P.DeWitt, Fundamentals of Heat and Mass Transfer, 5th Edi. Wiley, Singapore, 2002.
[15] M.L.V.Ramires, M.N.A.Fareleria, C.A.Nieto de Castro, M.Dix, W.A.Wakeham, "The thermal conductivity of toluene and water", Int. J. Thermophysics., vol. 14(6), pp. 1119-1130, 1993.
[16] D.H.Kumar, H. Patel, V.R.Rajeev Kumar, T.Sundarrajan, T.Pradip, S.K.Das, "Model of heat conduction in nanofluids", Physical Rev. Lett., vol. 93 no. 14, 144301(1- 4), Oct. 2004.
[17] R.Prasher, P.Bhattacharya, P.Phelan, "Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids, Trans. ASME, vol. 128, pp. 588-595, June 2006.
[18] S.Kim, S.Choi, D.Kim, "Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation", Trans. ASME, vol. 129, pp. 298-307, Mar. 2007.
[19] C.Li,G.Peterson, "The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids", J. Appl. Phy., 101, 044312(1- 5), 2007.
[20] S.P. Jang, S.U.S. Choi, "Role of Brownian motion in the enhanced thermal conductivity of nanofluids", Appl. Phys. Lett., vol. 84, pp. 4316- 4318, May 2004.
[21] C.T.Nguyen,F.Desgranges,G.Roy,N.Galanis,T.Mare,S.Broucher, H. Angue Minsta, "Temperature and particle-size dependent viscosity data for water-based nanofluids-Hysteresis phenomenon", Int. J. Heat Fluid Flow, vol. 28, pp. 1492-1506, Dec. 2007.
[22] C.T.Nguyen,F.Desgranges,N.Galanis,G.Roy,T.Mare,S.Broucher, H. Angue Minsta, "Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable?", Int. J. Ther. Sci., vol. 47, pp. 103-111, Feb. 2008.
[23] P. Atkins and J. de Paula, Physical chemistry, 8th int. Edi. , New Delhi: Oxford University Press, 2006.