Cooling of Fresh Vegetable Farm Produce: Experimental and Numerical Studies
Authors: Hala Yassine, Hervé Noel, Pascal Le Bideau, Patrick Glouannec
Abstract:
Following harvest, fresh produce needs to be cooled immediately in a room where the air temperature and the relative air humidity are controlled to maintain the produce quality. In this paper, an experimental study for forced air cooling of fresh produce (cauliflower) is performed using a pilot developed within our laboratory. Furthermore, a numerical simulation of spherical produces, taking into account the aerodynamic aspect and also the heat transfer in the produce and in the air, was carried out using a finite element method. At the end of this communication, experimental results are presented and compared with the simulation.
Keywords: Cauliflower, Forced air cooling, Heat transfer, Numerical model, Tunnel of air.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087568
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249References:
[1] G. Alvarez et D. Flick, « Analysis of heterogeneous cooling of
agricultural products inside bins Part I: aerodynamic study », J. Food
Eng., vol. 39, no 3, p. 227 ‑ 237, 1999.
[2] S. A. Tassou et W. Xiang, « Modelling the environment within a wet
air-cooled vegetable store », J. Food Eng., vol. 38, no 2, p. 169 ‑ 187,
1998.
[3] « Refrigeration requirements for fruits & vegetables ». Britsh
Columbia Ministry of Agriculture and Food, 1989.
[4] F.Billiard, J.L. Peden, « Le froid humide application à la refrigération
de chou », Journée Française Froid, p. 169‑173, 1988.
[5] G. Alvarez et D. Flick, « Analysis of heterogeneous cooling of
agricultural products inside bins: Part II: thermal study », J. Food
Eng., vol. 39, no 3, p. 239 ‑ 245, 1999.
[6] N. D. Amos, « Mathematical modeling of heat and water vapor
transport in apple coolstores », Massey University, 1995.
[7] D. J. Tanner, « Mathematical modeling for design of horticultural
packaging », Massey University, 1998.
[8] D.J. Tanner, A.C. Cleland, L.U. Opara, et T.R. Robertson, « A
generalised mathematical modelling methodology for design of
horticultural food packages exposed to refrigerated conditions: part 1,
formulation », Int. J. Refrig., vol. 25, no 1, p. 33 ‑ 42, 2002.
[9] D.J. Tanner, A.C. Cleland, et L.U. Opara, « A generalised
mathematical modelling methodology for the design of horticultural
food packages exposed to refrigerated conditions Part 2. heat transfer
modelling and testing », Int. J. Refrig., vol. 25, no 1, p. 43 ‑ 53, 2002.
[10] D.J. Tanner, A.C. Cleland, et T.R. Robertson, « A generalised
mathematical modelling methodology for design of horticultural food
packages exposed to refrigerated conditions: Part 3, mass transfer
modelling and testing », Int. J. Refrig., vol. 25, no 1, p. 54 ‑ 65, 2002.
[11] G. Alvarez et D. Flick, « Modelling turbulent flow and heat transfer
using macro-porous media approach used to predict cooling kinetics
of stack of food products », J. Food Eng., vol. 80, no 2, p. 391 ‑ 401,
2007.
[12] H. B. Nahor, M. L. Hoang, P. Verboven, M. Baelmans, et B. M.
Nicolaï, « CFD model of the airflow, heat and mass transfer in cool
stores », Int. J. Refrig., vol. 28, no 3, p. 368 ‑ 380, 2005.
[13] J. Dehghannya, M.l Ngadi, C. Vigneault, « Simultaneous aerodynamic
and thermal analysis during cooling of stacked spheres inside
ventilated packages », Chem. Engeneering Thechnologie, vol. 31, p.
1651‑1659, 2008.
[14] J. Dehghannya, M. Ngadi, et C. Vigneault, « Mathematical modeling
of airflow and heat transfer during forced convection cooling of
produce considering various package vent areas », Food Control, vol.
22, no 8, p. 1393 ‑ 1399, 2011.
[15] M. J. Ferrua et R. P. Singh, « Modeling the forced-air cooling process
of fresh strawberry packages, Part I: Numerical model », Int. J.
Refrig., vol. 32, no 2, p. 335 ‑ 348, 2009.
[16] M. J. Ferrua et R. P. Singh, « Modeling the forced-air cooling process
of fresh strawberry packages, Part II: Experimental validation of the
flow model », Int. J. Refrig., vol. 32, no 2, p. 349 ‑ 358, 2009.
[17] B. S. Gowda, G. S. V. L. Narasimham, et M. V. K. Murthy, « Forcedair
precooling of spherical foods in bulk: A parametric study », Int. J.
Heat Fluid Flow, vol. 18, no 6, p. 613 ‑ 624, 1997.
[18] M. A. Martins, L. S.Oliveria, J. A. O. Saraz, « Numerical study of
apple cooling in tandem arrangement », p. 158‑165, 2011.
[19] S. H. Ho, L. Rosario, et M. M. Rahman, « Numerical simulation of
temperature and velocity in a refrigerated warehouse », Int. J. Refrig.,
vol. 33, no 5, p. 1015 ‑ 1025, 2010.
[20] A. G. Dixon, M. E. Taskin, M. Nijemeisland, E. Hugh Stitt,
« Systematic mesh development for 3D CFD simulation of fixed beds:
Single sphere study », Comput. Chem. Eng., vol. 35, p. 1171‑1185,
2011.
[21] F.P.Incropera, D.P.Dewitt, T.L.Bergman, A.S.Lavine, Fundamentals
of heat and mass transfer. 2005.