Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30076
Cooling of Fresh Vegetable Farm Produce: Experimental and Numerical Studies

Authors: Hala Yassine, Hervé Noel, Pascal Le Bideau, Patrick Glouannec

Abstract:

Following harvest, fresh produce needs to be cooled immediately in a room where the air temperature and the relative air humidity are controlled to maintain the produce quality. In this paper, an experimental study for forced air cooling of fresh produce (cauliflower) is performed using a pilot developed within our laboratory. Furthermore, a numerical simulation of spherical produces, taking into account the aerodynamic aspect and also the heat transfer in the produce and in the air, was carried out using a finite element method. At the end of this communication, experimental results are presented and compared with the simulation.

Keywords: Cauliflower, Forced air cooling, Heat transfer, Numerical model, Tunnel of air.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087568

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821

References:


[1] G. Alvarez et D. Flick, « Analysis of heterogeneous cooling of agricultural products inside bins Part I: aerodynamic study », J. Food Eng., vol. 39, no 3, p. 227 ‑ 237, 1999.
[2] S. A. Tassou et W. Xiang, « Modelling the environment within a wet air-cooled vegetable store », J. Food Eng., vol. 38, no 2, p. 169 ‑ 187, 1998.
[3] « Refrigeration requirements for fruits & vegetables ». Britsh Columbia Ministry of Agriculture and Food, 1989.
[4] F.Billiard, J.L. Peden, « Le froid humide application à la refrigération de chou », Journée Française Froid, p. 169‑173, 1988.
[5] G. Alvarez et D. Flick, « Analysis of heterogeneous cooling of agricultural products inside bins: Part II: thermal study », J. Food Eng., vol. 39, no 3, p. 239 ‑ 245, 1999.
[6] N. D. Amos, « Mathematical modeling of heat and water vapor transport in apple coolstores », Massey University, 1995.
[7] D. J. Tanner, « Mathematical modeling for design of horticultural packaging », Massey University, 1998.
[8] D.J. Tanner, A.C. Cleland, L.U. Opara, et T.R. Robertson, « A generalised mathematical modelling methodology for design of horticultural food packages exposed to refrigerated conditions: part 1, formulation », Int. J. Refrig., vol. 25, no 1, p. 33 ‑ 42, 2002.
[9] D.J. Tanner, A.C. Cleland, et L.U. Opara, « A generalised mathematical modelling methodology for the design of horticultural food packages exposed to refrigerated conditions Part 2. heat transfer modelling and testing », Int. J. Refrig., vol. 25, no 1, p. 43 ‑ 53, 2002.
[10] D.J. Tanner, A.C. Cleland, et T.R. Robertson, « A generalised mathematical modelling methodology for design of horticultural food packages exposed to refrigerated conditions: Part 3, mass transfer modelling and testing », Int. J. Refrig., vol. 25, no 1, p. 54 ‑ 65, 2002.
[11] G. Alvarez et D. Flick, « Modelling turbulent flow and heat transfer using macro-porous media approach used to predict cooling kinetics of stack of food products », J. Food Eng., vol. 80, no 2, p. 391 ‑ 401, 2007.
[12] H. B. Nahor, M. L. Hoang, P. Verboven, M. Baelmans, et B. M. Nicolaï, « CFD model of the airflow, heat and mass transfer in cool stores », Int. J. Refrig., vol. 28, no 3, p. 368 ‑ 380, 2005.
[13] J. Dehghannya, M.l Ngadi, C. Vigneault, « Simultaneous aerodynamic and thermal analysis during cooling of stacked spheres inside ventilated packages », Chem. Engeneering Thechnologie, vol. 31, p. 1651‑1659, 2008.
[14] J. Dehghannya, M. Ngadi, et C. Vigneault, « Mathematical modeling of airflow and heat transfer during forced convection cooling of produce considering various package vent areas », Food Control, vol. 22, no 8, p. 1393 ‑ 1399, 2011.
[15] M. J. Ferrua et R. P. Singh, « Modeling the forced-air cooling process of fresh strawberry packages, Part I: Numerical model », Int. J. Refrig., vol. 32, no 2, p. 335 ‑ 348, 2009.
[16] M. J. Ferrua et R. P. Singh, « Modeling the forced-air cooling process of fresh strawberry packages, Part II: Experimental validation of the flow model », Int. J. Refrig., vol. 32, no 2, p. 349 ‑ 358, 2009.
[17] B. S. Gowda, G. S. V. L. Narasimham, et M. V. K. Murthy, « Forcedair precooling of spherical foods in bulk: A parametric study », Int. J. Heat Fluid Flow, vol. 18, no 6, p. 613 ‑ 624, 1997.
[18] M. A. Martins, L. S.Oliveria, J. A. O. Saraz, « Numerical study of apple cooling in tandem arrangement », p. 158‑165, 2011.
[19] S. H. Ho, L. Rosario, et M. M. Rahman, « Numerical simulation of temperature and velocity in a refrigerated warehouse », Int. J. Refrig., vol. 33, no 5, p. 1015 ‑ 1025, 2010.
[20] A. G. Dixon, M. E. Taskin, M. Nijemeisland, E. Hugh Stitt, « Systematic mesh development for 3D CFD simulation of fixed beds: Single sphere study », Comput. Chem. Eng., vol. 35, p. 1171‑1185, 2011.
[21] F.P.Incropera, D.P.Dewitt, T.L.Bergman, A.S.Lavine, Fundamentals of heat and mass transfer. 2005.