
 

 

  
Abstract—Computational simulation of steam flow and heat 

transfer in power plant condensers on the basis of the three-
dimensional mathematical model for the flow through porous media 
is presented. In order to solve the mathematical model of steam flow 
and heat transfer in power plant condensers, the Streamline Upwind 
Petrov-Galerkin finite element method is applied. By comparison of 
the results of simulation with experimental results about an 
experimental condenser, it is confirmed that SUPG finite element 
method can be successfully applied for solving the three-dimensional 
mathematical model of steam flow and heat transfer in power plant 
condensers. 
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I. INTRODUCTION 
HERE are numerous papers and reports concerning 
numerical simulation of steam flow and heat transfer in 

power plant condensers. In most of the papers the simulations 
are mainly based on the mathematical model which defines 
steam flow in the tube bundle as flow through porous media. 

The common characteristic of the most of the current works 
on this subject is solving the mathematical model on the basis 
of finite volume method with use a rectangular grid for 
discretization of the condenser area. 

Although this methods so far have shown good results in 
solving the mathematical model of steam flow and heat 
transfer in power plant condensers, the difficulties still remain 
in applying the rectangular grid for discretization of the 
condensers flow area, especially in modern condensers with 
complex irregular geometry. 

In this paper in order to solve the mathematical model of 
steam flow and heat transfer in power plant condensers, the 
finite element method is applied. 

II. MATHEMATICAL MODEL 
The steam flow and heat transfer are modeled, under 

assumption that condensate has negligible momentum and 
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occupies negligible volume, by three-dimensional 
mathematical model for flow of steam-air mixture in the 
porous media [1]. 

Mass conservation equation for the mixture:  
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Momentum conservation equations for the mixture: 
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Equation for conservation of air mass fraction: 
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The dependent variables are mixture velocity component u, 
v and w, mixture pressure p, and air mass fraction cg. The 
steam is assumed saturated. 

The constitutive equations related to other parameters, 
which are present in the mathematical model, are defined by 
the following relations: 

Local volume porosity ε: 
- for staggered distribution of the tubes in the bundle 

ε π
= − F

HG
I
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- for in-line distribution of the tubes in the bundle 

ε π
= − FHG

I
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Mixture density is determined on the basis of the equation 
of state, where steam and air are treated as perfect: 

ρ =
p

RT
                                                                           (8) 

Effective viscosity µeff is defined as sum of molecular and 
turbulent viscosity: 

µ µ µeff t= +                                                                      (9) 

Molecular viscosity µ is defined as [2]: 

µ
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=
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                                            (10) 

Turbulent viscosity µt is defined as: 
µ µt = ⋅20                                                                        (11) 

according to the recommendation of Zhang et al. [3]. 
The flow resistance forces are determined by the linear 

Darcy law, for the flow through porous media. 
F R ux x= µ                                                                        (12) 
F R vy y= µ                                                                        (13) 

Fz = 0                                                                              (14) 
The flow resistances Rx and Ry are determined by the 

adequate empirical relations about local flow resistance of a 
two-phase flow across the tube bundle [4]. 

R d G fx n x= ⋅ ⋅−2 Θ                                                            (15) 

R d G fy n y= ⋅ ⋅−2 Θ                                                            (16) 
Here G is the coefficient that takes into account the 

influence of tube bundle geometry 
G = − + + +1 017 0 3325 0 3574 0 013482 3, , , ,ε ε ε          (17) 

f is the fraction factor 
f = 0,0446350Re for Re < 20                                            (18) 

f = 103 0,338Re    for 20 < Re < 300                                 (19) 

f = 6,64 0,880Re   for 300 < Re                                         (20) 
Θx and Θy are correction factors, which take into account the 
influence of the rate of condensation, i.e., two-phase flow, on 
the flow resistances. These factors are functions of the 
condensation rate m, Re-number and the direction of the flow. 

The rate of steam condensation per unit volume is 
determined by the equation: 

m a
k T T

r
v=

−b g
                                                               (21) 

where a is the heat transfer area per unit fluid volume. 

a
dn
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4 1 εb g                                                                  (22) 

The overall heat transfer coefficient is determined as the 
sum of individual heat transfer coefficients: 
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αv is determined by the well-known McAdams equation of 
forced convection in the circular tube:  

α
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αc   is equivalent heat transfer coefficient across the tube wall: 

α
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2
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αk is determined on the basis of the equation of Honda et al. 
[5], for the condensation on the horizontal uninundated tube in 
the tube bundle, while the influence of the condensate 
inundation is taken via the relation of Cippolone et al. [6]. 

Nu Nu NuN F= +4 4 0 25d i ,
                                                     (26) 

Nu F Z Z ReN k= ⋅ + + ⋅0 728 1 0 570 25 2 0 25 0 5, ,, , ,d i                   (27) 

Nu Re PrF q k= ⋅0 11 0 8 0 4, , ,                                                     (28) 

Nu Nu n n= − −0
7 8 7 81b g                                               (29) 

αg is evaluated via Berman and Fuks [7], empirical equation 
for the mass transfer coefficient in the tube bundle during the 
downward flow of the steam-air mixture: 
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The coefficient for the steam diffusion in the air Dp is 
determined as:  

D D R Tp p=                                                                    (31) 
where D is determined on the basis of well known empirical 
equation of Fuller at al. as: 

D T
p

= ⋅0 00011756552
1 75

,
,

                                             (32) 

Boundary conditions are specified for the inlet, walls and 
outlet of condenser: 

1. At the inlet of the condenser, the boundary condition is 
the steam velocity determined on the basis of steam flow at 
the turbine exhaust and the cross sectional area of the inlet of 
the condenser. 

2. On the walls of condenser, support plates and plates for 
the direction of steam flow and drainage of condensate, the 
boundary condition is the normal component of mixture 
velocity to be equal to zero. 

3. At the outlet of the condenser, the boundary condition is 
the outlet velocity of the steam-air mixture, which is 
calculated on the basis of the characteristics of venting 
apparatus. 

III. MATHEMATICAL MODEL SOLVING 
The mathematical model of steam flow and heat transfer in 

power plant condensers is solved in two step procedure. In 
first step the system of PDE equations (1)-(4) is solved. As the 
result of this step the values of mixture velocity and pressure 
are obtained. In the second step, with the obtained results 
about mixture velocity and pressure, the equation for 
conservation of air mass fraction (5) is solved. As the result of 
this step the values of the air mass fraction in the mixture are 
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obtained. The whole procedure is repeated until the 
satisfactory accuracy is achieved. 

In the both steps, for the solving system equation (1)-(4) 
and equation (5) the Streamline Upwind Petrov-Galerkin 
(SUPG) finite element method is applied. 

In order to not be violated the convergence conditions of 
SUPG method, the choice of the applied elements for the 
discretization of condenser area is in agreement with 
recommended combinations for interpolating functions for 
velocity and pressure [8]. Because condenser's area is usually 
highly irregular, hexahedral elements are used for 
discretization. For approximation of the mixture velocity the 
second order interpolating functions are applied (Nu=Nv=Nw). 
For approximation of the pressure and air mass fraction a 
linear interpolating functions are applied. 

A. Discretization of the system of PDE 
The system of partial differential equations (1)-(4) with 

evaluating partial derivatives in convective terms and inserting 
the continuity equation (1) in the momentum equations (2)-(4) 
can be transformed in following form: 
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Main problem was how to apply some of the known finite 
element methods for solving this system of partial differential 
equations. 

In order to overcome this problem it was adopted that 
steam-air mixture in the area of every single finite element has 
constant physical parameters (density ρ and effective viscosity 
µeff), which can be determined on the basis of mean pressure 
(temperature) in the element. 

With such defined mixture physical parameters, the system 
of PDE (33)-(36) defined for single finite element can be 
formulated as follows 
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This system of PDE is very similar with the Navier-Stokes 
equations for incompressible flow. The difference is only in 
existence additional term about condensation rate (m) in 
continuity equation.  

Therefore, on such defined system of PDE the Petrov-
Galerkin procedure for solving Navier-Stokes equations for 
incompressible flow can be applied [8], [9]. 

With application of this procedure, the system PDE (37)-
(40) in the area of single element can be discretized in the 
following form 
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ST =
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

L

N
MMM

O

Q
PPP

x y z
y x z

z y x

0 0 0
0 0 0
0 0 0

             (51) 

u u v wT =                                                              (52) 
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uT = u u1 15                                                           (53) 

v T = v v1 15                                                           (54) 

wT = w w1 15                                                         (55) 

uT = u u v v w w1 15 1 15 1 15             (56) 

pT = p p p p p p1 2 3 4 5 6                                   (57) 
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      (58) 

Np = N N N N N Np p p p p p1 2 3 4 5 6                    (59) 
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Volume integration is performed with Gauss numerical 
qubature formula. 

Because the Peclet number of the flow of steam-air mixture 
in power plant condenser is usually between 50 and 5000 
(Pe>>1) the value of the upwind parameter α in Petrov-
Galerkin weighting function is taken equal to 1.  

Special characteristic of the discretization of system PDE 
(37)-(40) is that Petrov-Galerkin weighting is applied, beside 
in the discretization of convective term also in the 
discretization of resistance forces. This is done because the 
resistance forces are highly dependent from mixture velocity 
and therefore have convective nature. 

The global discretized system of equations for the whole 
condenser area is expressed by summing system of equations 
(41) for every finite element. 

A
u
p

f
m
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UVW =
RST
UVW                                                                   (62) 

This system of algebraic equation, because of non-linearity 
of the terms K and thereby also coefficients matrix А, is 
solved by Newton iteration method. 

B. Discretization of the equation of air mass fraction 
The equation for conservation of the air mass fraction (5) 

with evaluating partial derivatives in convective terms and 
inserting the continuity equation (1) can be transformed in 
following form: 
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This equation applied in the area of single finite element, 
where (as was stated above) is adopted that steam-air mixture 
physical parameters (in this case density ρ and molecular 
diffusivity D) are constant, can be formulated as follows 
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This equation is equal in the form to the classic convection-
diffusion equation. 

Therefore, for solving equation (64) the Petrov-Galerkin 
procedure for solving standard convection-diffusion equation 
[8] can be applied. 

With application of this procedure, the equation (64) in the 
area of single element can be discretized in the following form  

K K cg+ =~ 0                                                                (65) 

where in this case 
K W Nc c= ∇ ∇z D dV

V
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Nc = N N N N N Nc c c c c c1 2 3 4 5 6                      (69) 
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while other nomenclature is identical with previously defined.  
Volume integration is also performed with Gauss numerical 

qubature formula. 
The global discretized system of equations for the whole 

condenser area is obtained by summing system of equations 
(64) for every finite element. 

A cg = 0  
This system of algebraic equations, because of non-linearity 

of the terms K and thereby also coefficient matrix А, is also 
solved by Newton iteration method..  

IV. APLICATION OF PROPOSED PROCEDURE 
The described procedure is applied to analyze the steam 

flow and heat transfer in two configurations of the 
experimental condenser (with external and internal vent) of 
the NEI-Parsons, Ltd., England [10]. 

Specific characteristic of the proposed model and its 
predictive capability in comparison to the other presented 
models of steam flow and heat transfer in power plant 
condensers are discussed elsewhere [1], [11], [12]. 
 With comparison of the calculated results and experimental 
results about experimental condenser at NEI published in 
reference [10], is confirmed [1], [11], [12] that Streamline 
Upwind Petrov-Galerkin finite element method can be 
successfully applied for solving the three-dimensional 
mathematical model of steam flow and heat transfer in power 
plant condensers. 

V. CONCLUSION 
In this paper computational simulation of steam flow and 

heat transfer in power plant condensers on the basis of the 
three-dimensional mathematical model for the flow through 
porous media has been performed. For solving the model an 
iterative approach based on the Streamline Upwind Petrov-
Galerkin finite element method was applied.  
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Calculations of steam flow and heat transfer performed for 
an experimental condenser has shown that the obtained 
numerical results significantly approximate adequate 
experimental results about this condenser. 

NOMENCLATURE 
a - heat transfer area per unit volume, m2/m3 
cg - air mass fraction =ρg/ρ 
dv - inner diameter of tube, m 
dn - outer diameter of tube, m 
D - molecular diffusion coefficient, m2/s 
Dp - coefficient of vapour diffusion in air, kg/(Pa m s) 
Fx, Fy, Fz - flow resistance forces, N/m3 
f - friction factor 
k - overall heat transfer coefficient, W/(m2K) 
r - latent heat of condensation, J/kg 
m - condensation rate per unit volume, kg/(m3s) 
n - tube number in a vertical row 
p - pressure, Pa 
s - tube pitch, m 
q - heat flux per unit area, W/m2 
R - gas constant, J/(kg K) 
Rx, Ry - flow resistance, 1/m2 
T - temperature, K 
u - velocity component in the x direction, m/s 
v - velocity component in the y direction, m/s 
w - velocity component in the z direction, m/s 
α - heat transfer coefficient, W/(m2 K) 
ε - local volume porosity 
λ - thermal conductivity, W/(m K) 
µ - molecular viscosity, kg/(m s) 
µeff - effective viscosity, kg/(m s) 
µt - turbulent viscosity, kg/(m s) 
Θ - correction factors 
ρ - density, kg/m3 
 
Dimensionless criteria 
Eg= pg/p 
Fr - Froud number 
F = Prk/(Fr H) 
G = Rp H/Prk 
H = cpk (Tpk-Tc)/r 
Nu - Nusselt number 
Pr - Prandtl number 
Rρ = (ρkµk/ρpµp)0.5 
 
 
 
 
 
 
 
 
 
 

Re - Reynolds number 
Ref = 2πdnq/(µk r) 
Req = Ref + Rek(ρp/ρk)0.5 
Z = (1+1/G)2/3/F0.5 
 
Subscripts 
k - condensate 
g - gas 
p - steam 
pk - interphase (steam-condensate) surface 
c – tube 
v - cooling water 
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