Search results for: effective concentration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3726

Search results for: effective concentration

3696 Effects of pH, Temperature, Enzyme and Substrate Concentration on Xylooligosaccharides Production

Authors: M. D. S. Siti-Normah, S. Sabiha-Hanim, A. Noraishah

Abstract:

Agricultural residue such as oil palm fronds (OPF) is cheap, widespread and available throughout the year. Hemicelluloses extracted from OPF can be hydrolyzed to their monomers and used in production of xylooligosaccharides (XOs). The objective of the present study was to optimize the enzymatic hydrolysis process of OPF hemicellulose by varying pH, temperature, enzyme and substrate concentration for production of XOs. Hemicelluloses was extracted from OPF by using 3 M potassium hydroxide (KOH) at temperature of 40°C for 4 hrs and stirred at 400 rpm. The hemicellulose was then hydrolyzed using Trichoderma longibrachiatum xylanase at different pH, temperature, enzyme and substrate concentration. XOs were characterized based on reducing sugar determination. The optimum conditions to produced XOs from OPF hemicellulose was obtained at pH 4.6, temperature of 40°C , enzyme concentration of 2 U/mL and 2% substrate concentration. The results established the suitability of oil palm fronds as raw material for production of XOs.

Keywords: Hemicellulose, oil palm fronds, Trichoderma longibrachiatum, xylooligosaccharides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3153
3695 Investigation on Fluid Flow and Heat Transfer Characteristics in Spray Cooling Systems Using Nanofluids

Authors: D. H. Lee, Nur Irmawati

Abstract:

This paper aims to study the heat transfer and fluid flow characteristics of nanofluids used in spray cooling systems. The effect of spray height, type of nanofluids and concentration of nanofluids are numerically investigated. Five different nanofluids such as AgH2O, Al2O3, CuO, SiO2 and TiO2 with volume fraction range of 0.5% to 2.5% are used. The results revealed that the heat transfer performance decreases as spray height increases. It is found that TiO2 has the highest transfer coefficient among other nanofluids. In dilute spray conditions, low concentration of nanofluids is observed to be more effective in heat removal in a spray cooling system.

Keywords: Numerical simulation, Spray cooling, Heat transfer, Nanofluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
3694 Methanol Concentration Sensitive SWCNT/Nafion Composites

Authors: Kyongsoo Lee, , Seong-Il Kim, Byeong-Kwon Ju

Abstract:

An aqueous methanol sensor for use in direct methanol fuel cells (DMFCs) applications is demonstrated; the methanol sensor is built using dispersed single-walled carbon nanotubes (SWCNTs) with Nafion117 solution to detect the methanol concentration in water. The study is aimed at the potential use of the carbon nanotubes array as a methanol sensor for direct methanol fuel cells (DMFCs). The concentration of methanol in the fuel circulation loop of a DMFC system is an important operating parameter, because it determines the electrical performance and efficiency of the fuel cell system. The sensor is also operative even at ambient temperatures and responds quickly to changes in the concentration levels of the methanol. Such a sensor can be easily incorporated into the methanol fuel solution flow loop in the DMFC system.

Keywords: methanol concentration, SWCNT, nafion composites

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
3693 Using Reverse Osmosis Membrane for Chromium Removal from Aqueous Solution

Authors: S. A. Mousavi Rad, S. A. Mirbagheri, T. Mohammadi

Abstract:

In this paper, removal of chromium(VI) from aqueous solution has been researched using reverse osmosis. The influence of transmembrane pressure and feed concentration on permeate flux, water recovery, permeate concentration, and salt rejection was studied. The results showed that according to the variation of transmembrane pressure and feed concentration, the permeate flux and salt rejection were in the range 19.17 to 58.75 l/m2.min and 99.51 to 99.8 %, respectively. The highest permeate flux, 58.75 l/m2.min, and water recovery, 42.47 %, were obtained in the highest pressure and the lowest feed concentration. On the other hand, the lowest permeate concentration, 0.01 mg/l, and the highest salt rejection, 99.8 %, were obtained in the highest pressure and the lowest feed concentration.

Keywords: solution, Chromium, Removal, Reverse osmosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545
3692 Control of Biofilm Formation and Inorganic Particle Accumulation on Reverse Osmosis Membrane by Hypochlorite Washing

Authors: Masaki Ohno, Cervinia Manalo, Tetsuji Okuda, Satoshi Nakai, Wataru Nishijima

Abstract:

Reverse osmosis (RO) membranes have been widely used for desalination to purify water for drinking and other purposes. Although at present most RO membranes have no resistance to chlorine, chlorine-resistant membranes are being developed. Therefore, direct chlorine treatment or chlorine washing will be an option in preventing biofouling on chlorine-resistant membranes. Furthermore, if particle accumulation control is possible by using chlorine washing, expensive pretreatment for particle removal can be removed or simplified. The objective of this study was to determine the effective hypochlorite washing condition required for controlling biofilm formation and inorganic particle accumulation on RO membrane in a continuous flow channel with RO membrane and spacer. In this study, direct chlorine washing was done by soaking fouled RO membranes in hypochlorite solution and fluorescence intensity was used to quantify biofilm on the membrane surface. After 48 h of soaking the membranes in high fouling potential waters, the fluorescence intensity decreased to 0 from 470 using the following washing conditions: 10 mg/L chlorine concentration, 2 times/d washing interval, and 30 min washing time. The chlorine concentration required to control biofilm formation decreased as the chlorine concentration (0.5–10 mg/L), the washing interval (1–4 times/d), or the washing time (1–30 min) increased. For the sample solutions used in the study, 10 mg/L chlorine concentration with 2 times/d interval, and 5 min washing time was required for biofilm control. The optimum chlorine washing conditions obtained from soaking experiments proved to be applicable also in controlling biofilm formation in continuous flow experiments. Moreover, chlorine washing employed in controlling biofilm with suspended particles resulted in lower amounts of organic (0.03 mg/cm2) and inorganic (0.14 mg/cm2) deposits on the membrane than that for sample water without chlorine washing (0.14 mg/cm2 and 0.33 mg/cm2, respectively). The amount of biofilm formed was 79% controlled by continuous washing with 10 mg/L of free chlorine concentration, and the inorganic accumulation amount decreased by 58% to levels similar to that of pure water with kaolin (0.17 mg/cm2) as feed water. These results confirmed the acceleration of particle accumulation due to biofilm formation, and that the inhibition of biofilm growth can almost completely reduce further particle accumulation. In addition, effective hypochlorite washing condition which can control both biofilm formation and particle accumulation could be achieved.

Keywords: Biofouling control, hypochlorite, reverse osmosis, washing condition optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135
3691 Flow Characteristics of Pulp Liquid in Straight Ducts

Authors: M. Sumida

Abstract:

An experimental investigation was performed on pulp liquid flow in straight ducts with a square cross section. Fully developed steady flow was visualized and the fiber concentration was obtained using a light-section method developed by the author et al. The obtained results reveal quantitatively, in a definite form, the distribution of the fiber concentration. From the results and measurements of pressure loss, it is found that the flow characteristics of pulp liquid in ducts can be classified into five patterns. The relationships among the distributions of mean and fluctuation of fiber concentration, the pressure loss and the flow velocity are discussed, and then the features for each pattern are extracted. The degree of nonuniformity of the fiber concentration, which is indicated by the standard deviation of its distribution, is decreased from 0.3 to 0.05 with an increase in the velocity of the tested pulp liquid from 0.4 to 0.8%.

Keywords: Fiber Concentration, Flow Characteristic, Pulp Liquid, Straight Duct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
3690 Solid Concentration in Circulating Fluidized Bed Reactor for the MTO Process

Authors: Biao Wang, Tao Li, Qi-wen Sun, Wei-yong Ying, Ding-ye Fang

Abstract:

Methanol-to-olefins (MTO) coupled with transformation of coal or natural gas to methanol gives an interesting and promising way to produce ethylene and propylene. To investigate solid concentration in gas-solid fluidized bed for methanol-to-olefins process catalyzed by SAPO-34, a cold model experiment system is established in this paper. The system comprises a gas distributor in a 300mm internal diameter and 5000mm height acrylic column, the fiber optic probe system and series of cyclones. The experiments are carried out at ambient conditions and under different superficial gas velocity ranging from 0.3930m/s to 0.7860m/s and different initial bed height ranging from 600mm to 1200mm. The effects of radial distance, axial distance, superficial gas velocity, initial bed height on solid concentration in the bed are discussed. The effects of distributor shape and porosity on solid concentration are also discussed. The time-averaged solid concentration profiles under different conditions are obtained.

Keywords: Branched pipe distributor, distributor porosity, gas-solid fluidized bed, solid concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229
3689 Recovery of Copper and DCA from Simulated Micellar Enhanced Ultrafiltration (MEUF)Waste Stream

Authors: Chuan-Kun Liu, Chi-Wang Li

Abstract:

Simultaneous recovery of copper and DCA from simulated MEUF concentrated stream was investigated. Effects of surfactant (DCA) and metal (copper) concentrations, surfactant to metal molar ratio (S/M ratio), electroplating voltage, EDTA concentration, solution pH, and salt concentration on metal recovery and current efficiency were studied. Electric voltage of -0.5 V was shown to be optimum operation condition in terms of Cu recovery, current efficiency, and surfactant recovery. Increasing Cu recovery and current efficiency were observed with increases of Cu concentration while keeping concentration of DCA constant. However, increasing both Cu and DCA concentration while keeping S/M ratio constant at 2.5 showed detrimental effect on Cu recovery at DCA concentration higher than 15 mM. Cu recovery decreases with increasing pH while current efficiency showed an opposite trend. It is believed that conductivity is the main cause for discrepancy of Cu recovery and current efficiency observed at different pH. Finally, it was shown that EDTA had adverse effect on both Cu recovery and current efficiency while addition of NaCl salt had negative impact on current efficiency at concentration higher than 8000 mg/L.

Keywords: metal recovery, MEUF waste, surfactant, electroplating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
3688 Geochemical Assessment of Heavy Metals Concentration in Surface Sediment of West Port, Malaysia

Authors: B.Tavakoly Sany, A. Salleh, A.H .Sulaiman, A. Mehdinia, GH. Monazami

Abstract:

One year (November 2009-October 2010) sediment monitoring was used to evaluate pollution status, concentration and distribution of heavy metals (As, Cu, Cd, Cr, Hg, Ni, Pb and Zn) in West Port of Malaysia. Sediment sample were collected from nine stations every four months. Geo-accumulation factor and Pollution Load Index (PLI) were estimated to better understand the pollution level in study area. The heavy metal concentration (Mg/g dry weight) were ranged from 20.2 to 162 for As, 7.4 to 27.6 for Cu, 0.244 to 3.53 for Cd, 11.5 to 61.5 for Cr, 0.11 to 0.409 for Hg, 7.2 to 22.2 for Ni, 22.3 to 80 for Pb and 23 to 98.3 for Zn. In general, concentration some metals (As,Cd, Hg and Pb) was higher than background values that are considered as serious concern for aquatic life and the human health.

Keywords: Heavy metals, Sediment Quality, geo-accumulationindex, Pollution Load Index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
3687 Experimental Investigation and Optimization of Nanoparticle Mass Concentration and Heat Input of Loop Heat Pipe

Authors: P. Gunnasegaran, M. Z. Abdullah, M. Z. Yusoff, Nur Irmawati

Abstract:

This study presents experimental and optimization of nanoparticle mass concentration and heat input based on the total thermal resistance (Rth) of loop heat pipe (LHP), employed for PCCPU cooling. In this study, silica nanoparticles (SiO2) in water with particle mass concentration ranged from 0% (pure water) to 1% is considered as the working fluid within the LHP. The experimental design and optimization is accomplished by the design of experimental tool, Response Surface Methodology (RSM). The results show that the nanoparticle mass concentration and the heat input have significant effect on the Rth of LHP. For a given heat input, the Rth is found to decrease with the increase of the nanoparticle mass concentration up to 0.5% and increased thereafter. It is also found that the Rth is decreased when the heat input is increased from 20W to 60W. The results are optimized with the objective of minimizing the Rth, using Design-Expert software, and the optimized nanoparticle mass concentration and heat input are 0.48% and 59.97W, respectively, the minimum thermal resistance being 2.66 (ºC/W).

Keywords: Loop heat pipe, nanofluid, optimization, thermal resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
3686 Assessment of Physicochemical Characteristics and Heavy Metals Concentration in Freshwater from Jega River, Kebbi State, Nigeria

Authors: D. Y. Bawa, M. I. Ribah, I. S. Jega, V. O. Oyedepo

Abstract:

This study was conducted to determine the physicochemical characteristics and heavy metal concentration (Cadmium (Cd), Copper (Cu), Iron (Fe), Lead (Pb) and Zinc (Zn)) in freshwater from Jega river. 30 water samples were collected in two 1-liter sterile plastic containers from three designated sampling points, namely; Station A (before the bridge; upstream), Station B (at the bridge where human activities such as washing of cars, motorbike, clothes, bathing and other household materials are concentrated), Station C (after the bridge; downstream) fortnightly, between March and July 2014. Results indicated that the highest pH mean value of 7.08 ± 1.12 was observed in station C, the highest conductivity with the mean 58.75 ± 7.87 µs/cm was observed at station A, the highest mean value of the water total hardness was observed at station A (54 ± 16.11 mg/L), the highest mean value of nitrate deposit was observed in station A (1.66 ± 1.33 mg/L), the highest mean value of alkalinity was observed at station B (51.33 ± 6.66 mg/L) and the highest mean (39.56 ± 3.24 mg/L) of total dissolved solids was observed at station A. The highest concentration mean value of Fe was observed in station C (65.33 ± 4.50 mg/L), the highest concentrations of Cd was observed in station C (0.99 ± 0.36 mg/L), the mean value of 2.13 ± 1.99 mg/L was the highest concentration of Zn observed in station B, the concentration of Pb was not detected (ND) and the highest concentration of Cu with the mean value of 0.43 ± 0.16 mg/L was observed in station B, while the lowest concentration was observed at station C (0.27 ± 0.26 mg/L). Statistical analysis shows no significant difference (P > 0.05) among the sampling stations for both the physicochemical characteristics and heavy metal concentrations. The results were found to be within the internationally acceptable standard limits.

Keywords: Assessment, freshwater, heavy metal concentration, physicochemical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
3685 PM10 Concentration Emitted from Blasting and Crushing Processes of Limestone Mines in Saraburi Province, Thailand

Authors: Kanokrat Makkwao, Tassanee Prueksasit

Abstract:

This study aimed to investigate PM10 emitted from different limestone mines in Saraburi province, Thailand. The blasting and crushing were the main processes selected for PM10 sampling. PM10 was collected in two mines including, a limestone mine for cement manufacturing (mine A) and a limestone mine for construction (mine B). The IMPACT samplers were used to collect PM10. At blasting, the points aligning with the upwind and downwind direction were assigned for the sampling. The ranges of PM10 concentrations at mine A and B were 0.267-5.592 and 0.130-0.325 mg/m³, respectively, and the concentration at blasting from mine A was significantly higher than mine B (p < 0.05). During crushing at mine A, the PM10 concentration with the range of 1.153-3.716 and 0.085-1.724 mg/m³ at crusher and piles in respectively were observed whereas the PM10 concentration measured at four sampling points in mine B, including secondary crusher, tertiary crusher, screening point, and piles, were ranged 1.032-16.529, 10.957-74.057, 0.655-4.956, and 0.169-1.699 mg/m³, respectively. The emission of PM10 concentration at the crushing units was different in the ranges depending on types of machine, its operation, dust collection and control system, and environmental conditions.

Keywords: Blasting, crushing, limestone mines, PM10 concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 407
3684 Radon-222 Concentration and Potential Risk to Workers of Al-Jalamid Phosphate Mines, North Province, Saudi Arabia

Authors: El-Said. I. Shabana, Mohammad S. Tayeb, Maher M. T. Qutub, Abdulraheem A. Kinsara

Abstract:

Usually, phosphate deposits contain 238U and 232Th in addition to their decay products. Due to their different pathways in the environment, the 238U/232Th activity concentration ratio usually found to be greater than unity in phosphate sediments. The presence of these radionuclides creates a potential need to control exposure of workers in the mining and processing activities of the phosphate minerals in accordance with IAEA safety standards. The greatest dose to workers comes from exposure to radon, especially 222Rn from the uranium series, and has to be controlled. In this regard, radon (222Rn) was measured in the atmosphere (indoor and outdoor) of Al-Jalamid phosphate-mines working area using a portable radon-measurement instrument RAD7, in a purpose of radiation protection. Radon was measured in 61 sites inside the open phosphate mines, the phosphate upgrading facility (offices and rooms of the workers, and in some open-air sites) and in the dwellings of the workers residence-village that lies at about 3 km from the mines working area. The obtained results indicated that the average indoor radon concentration was about 48.4 Bq/m3. Inside the upgrading facility, the average outdoor concentrations were 10.8 and 9.7 Bq/m3 in the concentrate piles and crushing areas, respectively. It was 12.3 Bq/m3 in the atmosphere of the open mines. These values are comparable with the global average values. Based on the average values, the annual effective dose due to radon inhalation was calculated and risk estimates have been done. The average annual effective dose to workers due to the radon inhalation was estimated by 1.32 mSv. The potential excess risk of lung cancer mortality that could be attributed to radon, when considering the lifetime exposure, was estimated by 53.0x10-4. The results have been discussed in detail.

Keywords: Dosimetry, environmental monitoring, phosphate deposits, radiation protection, radon-22.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
3683 Experimental Investigation on Solid Concentration in Gas-Solid Circulating Fluidized Bed for Methanol-to-Olefins Process

Authors: Biao Wang, Tao Li, Qi-Wen Sun, Wei-Yong Ying, Ding-Ye Fang

Abstract:

Methanol-to-olefins coupled with transformation of coal or natural gas to methanol gives an interesting and promising way to produce ethylene and propylene. To investigate solid concentration in gas-solid fluidized bed for methanol-to-olefins process catalyzed by SAPO-34, a cold model experiment system is established in this paper. The system comprises a gas distributor in a 300mm internal diameter and 5000mm height acrylic column, the fiber optic probe system and series of cyclones. The experiments are carried out at ambient conditions and under different superficial gas velocity ranging from 0.3930m/s to 0.7860m/s and different initial bed height ranging from 600mm to 1200mm. The effects of radial distance, axial distance, superficial gas velocity, initial bed height on solid concentration in the bed are discussed. The effects of distributor shape and porosity on solid concentration are also discussed. The time-averaged solid concentration profiles under different conditions are obtained.

Keywords: Branched pipe distributor, distributor porosity, gas-solid fluidized bed, solid concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
3682 Analytical Model for Brine Discharges from a Sea Outfall with Multiport Diffusers

Authors: Anton Purnama

Abstract:

Multiport diffusers are the effective engineering devices installed at the modern marine outfalls for the steady discharge of effluent streams from the coastal plants, such as municipal sewage treatment, thermal power generation and seawater desalination. A mathematical model using a two-dimensional advection-diffusion equation based on a flat seabed and incorporating the effect of a coastal tidal current is developed to calculate the compounded concentration following discharges of desalination brine from a sea outfall with multiport diffusers. The analytical solutions are computed graphically to illustrate the merging of multiple brine plumes in shallow coastal waters, and further approximation will be made to the maximum shoreline's concentration to formulate dilution of a multiport diffuser discharge.

Keywords: Desalination brine discharge, mathematical model, multiport diffuser, two sea outfalls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2950
3681 Adsorption Studies on the Removal of Pesticides(Carbofuran) using Activated Carbon from Rice Straw Agricultural Waste

Authors: Ken-Lin Chang, Jun-Hong Lin, Shui-Tein Chen

Abstract:

In this study, we used a two-stage process and potassium hydroxide (KOH) to transform waste biomass (rice straw) into activated carbon and then evaluated the adsorption capacity of the waste for removing carbofuran from an aqueous solution. Activated carbon was fast and effective for the removal of carbofuran because of its high surface area. The native and carbofuran-loaded adsorbents were characterized by elemental analysis. Different adsorption parameters, such as the initial carbofuran concentration, contact time, temperature and pH for carbofuran adsorption, were studied using a batch system. This study demonstrates that rice straw can be very effective in the adsorption of carbofuran from bodies of water.

Keywords: Rice straw, Carbofuran, Activated carbon

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4064
3680 Optimization of Enzymatic Hydrolysis of Manihot Esculenta Root Starch by Immobilizeda-Amylase Using Response Surface Methodology

Authors: G. Baskar, C. Muthukumaran, S. Renganathan

Abstract:

Enzymatic hydrolysis of starch from natural sources finds potential application in commercial production of alcoholic beverage and bioethanol. In this study the effect of starch concentration, temperature, time and enzyme concentration were studied and optimized for hydrolysis of cassava (Manihot esculenta) starch powder (of mesh 80/120) into glucose syrup by immobilized (using Polyacrylamide gel) a-amylase using central composite design. The experimental result on enzymatic hydrolysis of cassava starch was subjected to multiple linear regression analysis using MINITAB 14 software. Positive linear effect of starch concentration, enzyme concentration and time was observed on hydrolysis of cassava starch by a-amylase. The statistical significance of the model was validated by F-test for analysis of variance (p < 0.01). The optimum value of starch concentration temperature, time and enzyme concentration were found to be 4.5% (w/v), 45oC, 150 min, and 1% (w/v) enzyme. The maximum glucose yield at optimum condition was 5.17 mg/mL.

Keywords: Enzymatic hydrolysis, Alcoholic beverage, Centralcomposite design, Polynomial model, glucose yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
3679 Removal of a Reactive Dye by Adsorption Utilizing Waste Aluminium Hydroxide Sludge as an Adsorbent

Authors: R. Songur, E. Bayraktar, U. Mehmetoglu

Abstract:

Removal of a reactive dye (Reactive blue 4) by adsorption utilizing waste aluminium hydroxide sludge as an adsorbent was investigated. The removal of the dye was optimized using response surface methodology (RSM). In the RSM experiments; initial dye concentration, adsorbent concentration and contact time were critical parameters. RSM experiments were performed at the range of initial dye concentration 31.82-368.18 mg/L, adsorbent concentration 3.18-36.82 g/L, contact time 15.82- 56.18 h. Optimum initial dye concentration, adsorbent concentration and contact time were obtained as 108.83 mg/L, 29.36 g/L and 33.57 h respectively. At these conditions, maximum removal of the dye was obtained as 95%. The experiments were performed at the optimum conditions to verify these results and the same results were obtained.

Keywords: Adsorption, Reactive blue 4, Response surface methodology (RSM), Waste aluminium hydroxide sludge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
3678 Nutritional Value of Rabbit Meat after Contamination with 1,1-Dimethylhydrazine

Authors: Balgabay Sadepovich Maikanov, Laura Tyulegenovna Auteleyeva, Seidenova Simbat Polatbekovna

Abstract:

In this article reduced nutritional value of the rabbits’ meat at 1, 1 dimethylhydrazine experimental toxicosis is shown. The assay was performed on liquid chromatograph SHIMADZU LC-20 Prominence (Japan) with fluorometric and spectrophotometric detector. This research has revealed that samples of rabbit meat of the experimental group had significant differences from the control group:in amino acids concentration from 1.2% to 9.1%; vitamin concentration from 11.2% to 60.5%, macro – minerals concentration from 17.4% to 78.1% and saturated fatty acids concentration from 17,1% to 34.5%, respectively. The decrease in the chemical composition of rabbits’ meat at 1,1 dimethylhydrazine toxicosis may be due to changes in the internal processes associated with impaired metabolic homeostasis of animals.

Keywords: 1, 1-dimethylhydrazine, metabolic homeostasis, nutritional value, rabbit meat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 722
3677 Environmental Impact Assessment of Ceramic Tile Materials Used in Jordan on Indoor Radon Level

Authors: Mefleh S. Hamideen

Abstract:

In this investigation, activity concentration of 226Ra, 232Th, and 40K, of some ceramic tile materials used in the local market of Jordan for interior decoration were determined by making use of High Purity Germanium (HPGe) detector. Twenty samples of different country of origin and sizes used in Jordan were analyzed. The concentration values of the last-mentioned radionuclides ranged from 30 Bq.kg-1 (Sample from Jordan) to 98 Bq.kg-1 (Sample from China) for 226Ra, 31 Bq.kg-1 (Sample from Italy) to 98 Bq.kg-1 (Sample from China) for 232Th, and 129 Bq.kg-1 (Sample from Spain) to 679 Bq.kg-1 (Sample from Italy) for 40K. Based on the calculated activity concentrations, some radiological parameters have been calculated to test the radiation hazards in the ceramic tiles. In this work, the following parameters: Total absorbed dose rate (DR), Annual effective dose rate (HR), Radium equivalent activity (Raeq), Radon emanation coefficient F (%) and Radon mass exhalation rate (Em) were calculated for all ceramic tiles and listed in the body of the work. Fortunately, the average calculated values of all parameters are less than the recommended values for each parameter. Consequently, almost all the examined ceramic materials appear to have low radon emanation coefficients. As a result of that investigation, no problems on people can appear by using those ceramic tiles in Jordan.

Keywords: radon emanation coefficient, radon mass exhalation rate, total annual effective dose, radon level

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 471
3676 Statistical Optimization of Enzymatic Hydrolysis of Potato (Solanum tuberosum) Starch by Immobilized α-amylase

Authors: N.Peatciyammal, B.Balachandar, M.Dinesh Kumar, K.Tamilarasan, C.Muthukumaran

Abstract:

Enzymatic hydrolysis of starch from natural sources finds potential application in commercial production of alcoholic beverage and bioethanol. In this study the effect of starch concentration, temperature, time and enzyme concentration were studied and optimized for hydrolysis of Potato starch powder (of mesh 80/120) into glucose syrup by immobilized (using Sodium arginate) α-amylase using central composite design. The experimental result on enzymatic hydrolysis of Potato starch was subjected to multiple linear regression analysis using MINITAB 14 software. Positive linear effect of starch concentration, enzyme concentration and time was observed on hydrolysis of Potato starch by α-amylase. The statistical significance of the model was validated by F-test for analysis of variance (p ≤ 0.01). The optimum value of starch concentration, enzyme concentration, temperature, time and were found to be 6% (w/v), 2% (w/v), 40°C and 80min respectively. The maximum glucose yield at optimum condition was 2.34 mg/mL.

Keywords: Alcoholic beverage, Central Composite Design, Enzymatic hydrolysis, Glucose yield, Potato Starch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6003
3675 Effects of Nanolayer Structure and Brownian Motion of Particles in Thermal Conductivity Enhancement of Nanofluids

Authors: M. Izadi, S. Hossainpour, D. Jalali-Vahid

Abstract:

Nanofluids are novel fluids that are going to have an important role in future industrial thermal device designs. Studies are being predominantly conducted on the mechanism of these heat transfers. The key to this attraction is in the increase in thermal conductivity brought about by the Nanofluids compared with the base fluid. Different models have been proposed for calculation of effective thermal conduction that has been gradually modified. In this investigation effect of nanolayer structure and Brownian motion of particles are studied and a new modified thermal conductivity model is proposed. Temperature, concentration, nanolayer thickness and particle size are taken as variables and their effect are studied simultaneously on the thermal conductivity of the fluids, showing the concentration of the nanoparticles to affect the nanolayer thickness which also affects the Brownian motion.

Keywords: Relative thermal conductivity, Brownian motion, Nanolayer structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
3674 Effect of Process Parameters on Aerobic Decolourization of Reactive Azo Dye using Mixed Culture

Authors: Kapil Kumar, M. G. Dastidar, T. R. Sreekrishnan

Abstract:

In the present study, an attempt was made to examine the potential of aerobic mixed culture for decolourization of Remazol Black B dye in batch reactors. The effect of pH, temperature, inoculum, initial concentration of dye and initial concentration of glucose was studied with an aim to determine the optimal conditions required for maximum decolourization and degradation. The culture exhibited maximum decolourization ability at pH between 7-8 and at 30°C. A 10% (v/v) inoculum and 1% (w/v) glucose concentration were found to be the optimum for decolourization. A maximum of 98% decolourization was observed at 25 ppm initial concentration of dye after 18 hours of incubation period. At higher dye concentration of 300 ppm, the removal in colour was found to be 75% in 48 hours of incubation period. The results show that the enriched mixed culture from activated sludge has good potential in removal of Remazol Black B dye from wastewater under aerobic conditions.

Keywords: Aerobic conditions, Decolourization, Mixed culture, Remazol Black B.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
3673 Mathematical Modelling of Venturi Scrubber for Ammonia Absorption

Authors: S.Mousavian, D.Ashouri, M.abdolahi, M.H.Vakili, Y.Rahnama

Abstract:

In this study, the dispersed model is used to predict gas phase concentration, liquid drop concentration. The venturi scrubber efficiency is calculated by gas phase concentration. The modified model has been validated with available experimental data of Johnstone, Field and Tasler for a range of throat gas velocities, liquid to gas ratios and particle diameters and is used to study the effect of some design parameters on collection efficiency.

Keywords: Ammonia, Modelling, Purge gas, Removal efficiency, Venturi scrubber

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
3672 Modelling and Control of Milk Fermentation Process in Biochemical Reactor

Authors: Jožef Ritonja

Abstract:

The biochemical industry is one of the most important modern industries. Biochemical reactors are crucial devices of the biochemical industry. The essential bioprocess carried out in bioreactors is the fermentation process. A thorough insight into the fermentation process and the knowledge how to control it are essential for effective use of bioreactors to produce high quality and quantitatively enough products. The development of the control system starts with the determination of a mathematical model that describes the steady state and dynamic properties of the controlled plant satisfactorily, and is suitable for the development of the control system. The paper analyses the fermentation process in bioreactors thoroughly, using existing mathematical models. Most existing mathematical models do not allow the design of a control system for controlling the fermentation process in batch bioreactors. Due to this, a mathematical model was developed and presented that allows the development of a control system for batch bioreactors. Based on the developed mathematical model, a control system was designed to ensure optimal response of the biochemical quantities in the fermentation process. Due to the time-varying and non-linear nature of the controlled plant, the conventional control system with a proportional-integral-differential controller with constant parameters does not provide the desired transient response. The improved adaptive control system was proposed to improve the dynamics of the fermentation. The use of the adaptive control is suggested because the parameters’ variations of the fermentation process are very slow. The developed control system was tested to produce dairy products in the laboratory bioreactor. A carbon dioxide concentration was chosen as the controlled variable. The carbon dioxide concentration correlates well with the other, for the quality of the fermentation process in significant quantities. The level of the carbon dioxide concentration gives important information about the fermentation process. The obtained results showed that the designed control system provides minimum error between reference and actual values of carbon dioxide concentration during a transient response and in a steady state. The recommended control system makes reference signal tracking much more efficient than the currently used conventional control systems which are based on linear control theory. The proposed control system represents a very effective solution for the improvement of the milk fermentation process.

Keywords: Bioprocess engineering, biochemical reactor, fermentation process, modeling, adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
3671 Optimization of Process Parameters using Response Surface Methodology for the Removal of Zinc(II) by Solvent Extraction

Authors: B. Guezzen, M.A. Didi, B. Medjahed

Abstract:

A factorial design of experiments and a response surface methodology were implemented to investigate the liquid-liquid extraction process of zinc (II) from acetate medium using the 1-Butyl-imidazolium di(2-ethylhexyl) phosphate [BIm+][D2EHP-]. The optimization process of extraction parameters such as the initial pH effect (2.5, 4.5, and 6.6), ionic liquid concentration (1, 5.5, and 10 mM) and salt effect (0.01, 5, and 10 mM) was carried out using a three-level full factorial design (33). The results of the factorial design demonstrate that all these factors are statistically significant, including the square effects of pH and ionic liquid concentration. The results showed that the order of significance: IL concentration > salt effect > initial pH. Analysis of variance (ANOVA) showing high coefficient of determination (R2 = 0.91) and low probability values (P < 0.05) signifies the validity of the predicted second-order quadratic model for Zn (II) extraction. The optimum conditions for the extraction of zinc (II) at the constant temperature (20 °C), initial Zn (II) concentration (1mM) and A/O ratio of unity were: initial pH (4.8), extractant concentration (9.9 mM), and NaCl concentration (8.2 mM). At the optimized condition, the metal ion could be quantitatively extracted.

Keywords: Ionic liquid, response surface methodology, solvent extraction, zinc acetate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1109
3670 Cell Biomass and Lipid Productivities of Meyerella planktonica under Autotrophic and Heterotrophic Growth Conditions

Authors: Rory Anthony Hutagalung, Leonardus Widjaya

Abstract:

Microalgae Meyerella planktonica is a potential biofuel source because it can grow in bulk in either autotrophic or heterotrophic condition. However, the quantitative growth of this algal type is still low as it tends to precipitates on the bottom. Besides, the lipid concentration is still low when grown in autotrophic condition. In contrast, heterotrophic condition can enhance the lipid concentration. The combination of autotrophic condition and agitation treatment was conducted to increase the density of the culture. On the other hand, a heterotrophic condition was set up to raise the lipid production. A two-stage experiment was applied to increase the density at the first step and to increase the lipid concentration in the next step. The autotrophic condition resulted higher density but lower lipid concentration compared to heterotrophic one. The agitation treatment produced higher density in both autotrophic and heterotrophic conditions. The two-stage experiment managed to enhance the density during the autotrophic stage and the lipid concentration during the heterotrophic stage. The highest yield was performed by using 0.4% v/v glycerol as a carbon source (2.9±0.016 x 10^6 cells w/w) attained 7 days after the heterotrophic stage began. The lipid concentration was stable starting from day 7.

Keywords: Agitation, Glycerol, Heterotrophic, Lipid Productivity, Meyerella planktonica.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
3669 Role and Effect of Temperature on LPG Sweetening Process

Authors: Ali Samadi Afshar, Sayed Reaza Hashemi

Abstract:

In the gas refineries of Iran-s South Pars Gas Complex, Sulfrex demercaptanization process is used to remove volatile and corrosive mercaptans from liquefied petroleum gases by caustic solution. This process consists of two steps. Removing low molecular weight mercaptans and regeneration exhaust caustic. Some parameters such as LPG feed temperature, caustic concentration and feed-s mercaptan in extraction step and sodium mercaptide content in caustic, catalyst concentration, caustic temperature, air injection rate in regeneration step are effective factors. In this paper was focused on temperature factor that play key role in mercaptans extraction and caustic regeneration. The experimental results demonstrated by optimization of temperature, sodium mercaptide content in caustic because of good oxidation minimized and sulfur impurities in product reduced.

Keywords: Caustic regeneration, demercaptanization, LPG sweetening, mercaptan extraction, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5922
3668 Effects of Molybdenum Treatments on Maize and Sunflower Seedlings

Authors: E. Bodi, Sz. Veres, F. Garousi, Sz. Varallyay, B. Kovacs

Abstract:

The aim of the present study was to examine whether increasing molybdenum (Mo) concentration affects the growth and Mo concentration of maize (Zea mays L. cv Norma SC) and sunflower (Helianthus annuus L. cv Arena PR) seedlings within laboratory conditions. In this experiment, calcareous chernozem soil was used and Mo was supplemented into the soil as ammonium molybdate [(NH4)6Mo7O24.4H2O] in four different concentrations as follow: 0 (control), 30, 90 and 270 mg·kg-1. In this study, we found that molybdenum in small amount (30 mg·kg-1) affects positively on growth of maize and sunflower seedlings, however, higher concentration of Mo reduces the dry weights of shoots and roots. In the case of maize the highest Mo treatment (270 mg·kg-1) and in sunflower 90 mg·kg-1 treatment caused significant reduction in plant growth. In addition, we observed that molybdenum contents in the roots and shoots were very low in case of control soil but were significantly elevated with increasing concentration of Mo treatment. Only in case of sunflower the highest 270 mg·kg-1 Mo treatment caused decrease in Mo concentration.

Keywords: Dry weight, maize, molybdenum, sunflower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2763
3667 Effect of Various Concentrations of Humic Acid on Growth and Development of Eggplant Seedlings in Tissue Cultures at Low Nutrient Level

Authors: Kullanart Obsuwan, Suluck Namchote, Natdhera Sanmanee, Kamolchanok Panishkan, Sirichai Dharmvanij

Abstract:

Humic acids (HAs) have been shown to activate some ion uptakes along with stimulating the lateral roots at effective concentration of micronutrients. However, the effects of HA on ion adsorption by plant roots are not easily explainable due to the varieties of HAs that differ from origins. Therefore, this study was aimed to investigate the effect of various concentrations of HA obtained from the compost derived from mix manures and some agricultural wastes on the growth of eggplant seedlings (Solanum melongena L. cv. Chao Praya) in tissue cultures at low nutrient level. Egg plant seeds were surfaced sterilized and germinated in ½ Murashige and Skoog medium (MS) without HA added or in ¼ MS supplemented with 0, 25, 50, 75 and 100 ppm of HAs. Then, they were cultured for 4 weeks under the controlled environment. The results showed that seedlings grown on ¼MS supplemented with HAs at the concentration of 25 and 50 ppm had the average plant heights (2.49 and 2.28 cm, respectively) higher than the other treatments. Both treatments also significantly showed the maximum average fresh and dry weights (p<0.05). Also the later yielded the highest average number of leaves and the longest average root length (p<0.05). However, there was no statistically different in the number of roots among treatments (p>0.05). This suggested that HAs at the concentration of 25 and 50 ppm could improve the growth of egg plant seedlings in tissue cultures at low nutrient level (¼ MS).

Keywords: growth, seedling, humic acid, fresh weght, dry weight, tissue culture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434