Search results for: eddy current
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2523

Search results for: eddy current

2463 A High Performance Technique in Harmonic Omitting Based on Predictive Current Control of a Shunt Active Power Filter

Authors: K. G. Firouzjah, A. Sheikholeslami

Abstract:

The perfect operation of common Active Filters is depended on accuracy of identification system distortion. Also, using a suitable method in current injection and reactive power compensation, leads to increased filter performance. Due to this fact, this paper presents a method based on predictive current control theory in shunt active filter applications. The harmonics of the load current is identified by using o–d–q reference frame on load current and eliminating the DC part of d–q components. Then, the rest of these components deliver to predictive current controller as a Threephase reference current by using Park inverse transformation. System is modeled in discreet time domain. The proposed method has been tested using MATLAB model for a nonlinear load (with Total Harmonic Distortion=20%). The simulation results indicate that the proposed filter leads to flowing a sinusoidal current (THD=0.15%) through the source. In addition, the results show that the filter tracks the reference current accurately.

Keywords: Active filter, predictive current control, low pass filter, harmonic omitting, o–d–q reference frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
2462 Thermal Analysis of the Current Path from Circuit Breakers Using Finite Element Method

Authors: Adrian T. Plesca

Abstract:

This paper describes a three-dimensional thermal model of the current path included in the low voltage power circuit breakers. The model can be used to analyse the thermal behaviour of the current path during both steady-state and transient conditions. The current path lengthwise temperature distribution and timecurrent characteristic of the terminal connections of the power circuit breaker have been obtained. The influence of the electric current and voltage drop on main electric contact of the circuit breaker has been investigated. To validate the three-dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.

Keywords: Current path, power circuit breakers, temperature distribution, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2640
2461 A Design Methodology and Tool to Support Ecodesign Implementation in Induction Hobs

Authors: Anna Costanza Russo, Daniele Landi, Michele Germani

Abstract:

Nowadays, the European Ecodesign Directive has emerged as a new approach to integrate environmental concerns into the product design and related processes. Ecodesign aims to minimize environmental impacts throughout the product life cycle, without compromising performances and costs. In addition, the recent Ecodesign Directives require products which are increasingly eco-friendly and eco-efficient, preserving high-performances. It is very important for producers measuring performances, for electric cooking ranges, hobs, ovens, and grills for household use, and a low power consumption of appliances represents a powerful selling point, also in terms of ecodesign requirements. The Ecodesign Directive provides a clear framework about the sustainable design of products and it has been extended in 2009 to all energy-related products, or products with an impact on energy consumption during the use. The European Regulation establishes measures of ecodesign of ovens, hobs, and kitchen hoods, and domestic use and energy efficiency of a product has a significant environmental aspect in the use phase which is the most impactful in the life cycle. It is important that the product parameters and performances are not affected by ecodesign requirements from a user’s point of view, and the benefits of reducing energy consumption in the use phase should offset the possible environmental impact in the production stage. Accurate measurements of cooking appliance performance are essential to help the industry to produce more energy efficient appliances. The development of ecodriven products requires ecoinnovation and ecodesign tools to support the sustainability improvement. The ecodesign tools should be practical and focused on specific ecoobjectives in order to be largely diffused. The main scope of this paper is the development, implementation, and testing of an innovative tool, which could be an improvement for the sustainable design of induction hobs. In particular, a prototypical software tool is developed in order to simulate the energy performances of the induction hobs. The tool is focused on a multiphysics model which is able to simulate the energy performances and the efficiency of induction hobs starting from the design data. The multiphysics model is composed by an electromagnetic simulation and a thermal simulation. The electromagnetic simulation is able to calculate the eddy current induced in the pot, which leads to the Joule heating of material. The thermal simulation is able to measure the energy consumption during the operational phase. The Joule heating caused from the eddy currents is the output of electromagnetic simulation and the input of thermal ones. The aims of the paper are the development of integrated tools and methodologies of virtual prototyping in the context of the ecodesign. This tool could be a revolutionary instrument in the field of industrial engineering and it gives consideration to the environmental aspects of product design and focus on the ecodesign of energy-related products, in order to achieve a reduced environmental impact.

Keywords: Ecodesign, induction hobs, virtual prototyping, energy efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198
2460 An Accurate, Wide Dynamic Range Current Mirror Structure

Authors: Hassan Faraji Baghtash

Abstract:

In this paper, a low voltage high performance current mirror is presented. Its most important specifications, which are improved in this work, are analyzed and formulated proving that it has such outstanding merits as: Very low input resistance of 26mΩ, very wide current dynamic range of 8 decades from 10pA to 1mA (160dB) together with an extremely low current copy error of less than 0.6ppm, and very low input and output voltages. Furthermore, the proposed current mirror bandwidth is 944MHz utilizing very low power consumption (267μW) and transistors count. HSPICE simulation results are performed using TSMC 0.18μm CMOS technology utilizing 1.8V single power supply, confirming the theoretically proved outstanding performance of the proposed current mirror. Monte Carlo simulation of its most important parameter is also examined showing its sufficiently resistance against technology process variations.

Keywords: Current mirror/source, high accuracy, low voltage, wide dynamic range.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
2459 An On-chip LDO Voltage Regulator with Improved Current Buffer Compensation

Authors: Lv Xiaopeng, Bian Qiang, Yue Suge

Abstract:

A fully on-chip low drop-out (LDO) voltage regulator with 100pF output load capacitor is presented. A novel frequency compensation scheme using current buffer is adopted to realize single dominant pole within the unit gain frequency of the regulation loop, the phase margin (PM) is at least 50 degree under the full range of the load current, and the power supply rejection (PSR) character is improved compared with conventional Miller compensation. Besides, the differentiator provides a high speed path during the load current transient. Implemented in 0.18μm CMOS technology, the LDO voltage regulator provides 100mA load current with a stable 1.8V output voltage consuming 80μA quiescent current.

Keywords: capacitor-less LDO, frequency compensation, transient response, power supply rejection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4602
2458 Characterization of the Near-Wake of an Ahmed Body Profile

Authors: Stéphanie Pellerin, Bérengére Podvin, Luc Pastur

Abstract:

In aerovehicles context, the flow around an Ahmed body profile is simulated using the velocity-vorticity formulation of the Navier-Stokes equations, associated to a penalization method for solids and Large Eddy Simulation for turbulence. The study focuses both on the ground influence on the flow and on the dissymetry of the wake, observed for a ground clearance greater than 10% of the body height H. Unsteady and mean flows are presented and analyzed. POD study completes the analysis and gives information on the most energetic structures of the flow.

Keywords: Ahmed body, bi-stability, LES, near wake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
2457 A Comparison of Inflow Generation Methods for Large-Eddy Simulation

Authors: Francois T. Pronk, Steven J. Hulshoff

Abstract:

A study of various turbulent inflow generation methods was performed to compare their relative effectiveness for LES computations of turbulent boundary layers. This study confirmed the quality of the turbulent information produced by the family of recycling and rescaling methods which take information from within the computational domain. Furthermore, more general inflow methods also proved applicable to such simulations, with a precursor-like inflow and a random inflow augmented with forcing planes showing promising results.

Keywords: Boundary layer, Flat plate, Inflow modeling, LES

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
2456 Charge-Pump with a Regulated Cascode Circuit for Reducing Current Mismatch in PLLs

Authors: Jae Hyung Noh, Hang Geun Jeong

Abstract:

The charge-pump circuit is an important component in a phase-locked loop (PLL). The charge-pump converts Up and Down signals from the phase/frequency detector (PFD) into current. A conventional CMOS charge-pump circuit consists of two switched current sources that pump charge into or out of the loop filter according to two logical inputs. The mismatch between the charging current and the discharging current causes phase offset and reference spurs in a PLL. We propose a new charge-pump circuit to reduce the current mismatch by using a regulated cascode circuit. The proposed charge-pump circuit is designed and simulated by spectre with TSMC 0.18-μm 1.8-V CMOS technology.

Keywords: Phase-locked loop (PLL), charge-pump, phase/frequency detector (PFD), regulated cascode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3881
2455 Design of a Hand-Held, Clamp-on, Leakage Current Sensor for High Voltage Direct Current Insulators

Authors: Morné Roman, Robert van Zyl, Nishanth Parus, Nishal Mahatho

Abstract:

Leakage current monitoring for high voltage transmission line insulators is of interest as a performance indicator. Presently, to the best of our knowledge, there is no commercially available, clamp-on type, non-intrusive device for measuring leakage current on energised high voltage direct current (HVDC) transmission line insulators. The South African power utility, Eskom, is investigating the development of such a hand-held sensor for two important applications; first, for continuous real-time condition monitoring of HVDC line insulators and, second, for use by live line workers to determine if it is safe to work on energised insulators. In this paper, a DC leakage current sensor based on magnetic field sensing techniques is developed. The magnetic field sensor used in the prototype can also detect alternating current up to 5 MHz. The DC leakage current prototype detects the magnetic field associated with the current flowing on the surface of the insulator. Preliminary HVDC leakage current measurements are performed on glass insulators. The results show that the prototype can accurately measure leakage current in the specified current range of 1-200 mA. The influence of external fields from the HVDC line itself on the leakage current measurements is mitigated through a differential magnetometer sensing technique. Thus, the developed sensor can perform measurements on in-service HVDC insulators. The research contributes to the body of knowledge by providing a sensor to measure leakage current on energised HVDC insulators non-intrusively. This sensor can also be used by live line workers to inform them whether or not it is safe to perform maintenance on energized insulators.

Keywords: Direct current, insulator, leakage current, live line, magnetic field, sensor, transmission lines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856
2454 The Calculation of Electromagnetic Fields (EMF) in Substations of Shopping Centers

Authors: Adnan Muharemovic, Hidajet Salkic, Mario Klaric, Irfan Turkovic, Aida Muharemovic

Abstract:

In nature, electromagnetic fields always appear like atmosphere static electric field, the earth's static magnetic field and the wide-rang frequency electromagnetic field caused by lightening. However, besides natural electromagnetic fields (EMF), today human beings are mostly exposed to artificial electromagnetic fields due to technology progress and outspread use of electrical devices. To evaluate nuisance of EMF, it is necessary to know field intensity for every frequency which appears and compare it with allowed values. Low frequency EMF-s around transmission and distribution lines are time-varying quasi-static electromagnetic fields which have conservative component of low frequency electrical field caused by charges and eddy component of low frequency magnetic field caused by currents. Displacement current or field delay are negligible, so energy flow in quasi-static EMF involves diffusion, analog like heat transfer. Electrical and magnetic field can be analyzed separately. This paper analysis the numerical calculations in ELF-400 software of EMF in distribution substation in shopping center. Analyzing the results it is possible to specify locations exposed to the fields and give useful suggestion to eliminate electromagnetic effect or reduce it on acceptable level within the non-ionizing radiation norms and norms of protection from EMF.

Keywords: Electromagnetic Field, Density of Electromagnetic Flow, Place of Proffesional Exposure, Place of Increased Sensitivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3811
2453 A 5-V to 30-V Current-Mode Boost Converter with Integrated Current Sensor and Power-on Protection

Authors: Jun Yu, Yat-Hei Lam, Boris Grinberg, Kevin Chai Tshun Chuan

Abstract:

This paper presents a 5-V to 30-V current-mode boost converter for powering the drive circuit of a micro-electro-mechanical sensor. The design of a transconductance amplifier and an integrated current sensing circuit are presented. In addition, essential building blocks for power-on protection such as a soft-start and clamp block and supply and clock ready block are discussed in details. The chip is fabricated in a 0.18-μm CMOS process. Measurement results show that the soft-start and clamp block can effectively limit the inrush current during startup and protect the boost converter from startup failure.

Keywords: Boost Converter, Current Sensing, Power-on protection, Step-up Converter, Soft-start.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
2452 A Fixed Band Hysteresis Current Controller for Voltage Source AC Chopper

Authors: K. Derradji Belloum, A. Moussi

Abstract:

Most high-performance ac drives utilize a current controller. The controller switches a voltage source inverter (VSI) such that the motor current follows a set of reference current waveforms. Fixed-band hysteresis (FBH) current control has been widely used for the PWM inverter. We want to apply the same controller for the PWM AC chopper. The aims of the controller is to optimize the harmonic content at both input and output sides, while maintaining acceptable losses in the ac chopper and to control in wide range the fundamental output voltage. Fixed band controller has been simulated and analyzed for a single-phase AC chopper and are easily extended to three-phase systems. Simulation confirmed the advantages and the excellent performance of the modulation method applied for the AC chopper.

Keywords: AC chopper, Current controller, Distortion factor, Hysteresis, Input Power Factor, PWM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3536
2451 Current Controlled Current Conveyor (CCCII)and Application using 65nm CMOS Technology

Authors: Zia Abbas, Giuseppe Scotti, Mauro Olivieri

Abstract:

Current mode circuits like current conveyors are getting significant attention in current analog ICs design due to their higher band-width, greater linearity, larger dynamic range, simpler circuitry, lower power consumption and less chip area. The second generation current controlled conveyor (CCCII) has the advantage of electronic adjustability over the CCII i.e. in CCCII; adjustment of the X-terminal intrinsic resistance via a bias current is possible. The presented approach is based on the CMOS implementation of second generation positive (CCCII+), negative (CCCII-) and dual Output Current Controlled Conveyor (DOCCCII) and its application as Universal filter. All the circuits have been designed and simulated using 65nm CMOS technology model parameters on Cadence Virtuoso / Spectre using 1V supply voltage. Various simulations have been carried out to verify the linearity between output and input ports, range of operation frequency, etc. The outcomes show good agreement between expected and experimental results.

Keywords: CCCII+, CCCII-, DOCCCII, Electronic tunability, Universal filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4657
2450 Corrosion Evaluation of Zinc Coating Prepared by Two Types of Electric Currents

Authors: M. Sajjadnejad, H. Karimi Abadeh

Abstract:

In this research, zinc coatings were fabricated by electroplating process in a sulfate solution under direct and pulse current conditions. In direct and pulse current conditions, effect of maximum current was investigated on the coating properties. Also a comparison was made between the obtained coatings under direct and pulse current. Morphology of the coatings was investigated by scanning electron microscopy (SEM). Corrosion behavior of the coatings was investigated by potentiodynamic polarization test. In pulse current conditions, the effect of pulse frequency and duty cycle was also studied. The effect of these conditions and parameters were also investigated on morphology and corrosion behavior. All of DC plated coatings are showing a distinct passivation area in -1 to -0.4 V range. Pulsed current coatings possessed a higher corrosion resistance. The results showed that current density is the most important factor regarding the fabrication process. Furthermore, a rise in duty cycle deteriorated corrosion resistance of coatings. Pulsed plated coatings performed almost 10 times better than DC plated coatings.

Keywords: Corrosion, duty cycle, pulsed current, zinc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
2449 Higher Frequency Modeling of Synchronous Exciter Machines by Equivalent Circuits and Transfer Functions

Authors: Marcus Banda

Abstract:

In this article the influence of higher frequency effects in addition to a special damper design on the electrical behavior of a synchronous generator main exciter machine is investigated. On the one hand these machines are often highly stressed by harmonics from the bridge rectifier thus facing additional eddy current losses. On the other hand the switching may cause the excitation of dangerous voltage peaks in resonant circuits formed by the diodes of the rectifier and the commutation reactance of the machine. Therefore modern rotating exciters are treated like synchronous generators usually modeled with a second order equivalent circuit. Hence the well known Standstill Frequency Response Test (SSFR) method is applied to a test machine in order to determine parameters for the simulation. With these results it is clearly shown that higher frequencies have a strong impact on the conventional equivalent circuit model. Because of increasing field displacement effects in the stranded armature winding the sub-transient reactance is even smaller than the armature leakage at high frequencies. As a matter of fact this prevents the algorithm to find an equivalent scheme. This issue is finally solved using Laplace transfer functions fully describing the transient behavior at the model ports.

Keywords: Synchronous exciter machine, Linear transfer function, SSFR, Equivalent Circuit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996
2448 Large Eddy Simulation of Flow Separation Control over a NACA2415 Airfoil

Authors: M. Tahar Bouzaher

Abstract:

This study involves a numerical simulation of the flow around a NACA2415 airfoil, with a 15°angle of attack, and flow separation control using a rod, It reposes inputting a cylindrical rod upstream of the leading edge in order to accelerate the transition of the boundary layer by interaction between the rod wake and the boundary layer. The viscous, non-stationary flow is simulated using ANSYS FLUENT 13. Our results showed a substantial modification in the flow behavior and a maximum drag reduction of 51%.

Keywords: CFD, Flow separation, Active control, Boundary layer, rod, NACA 2415.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
2447 PSRR Enhanced LDO Regulator Using Noise Sensing Circuit

Authors: Min-ju Kwon, Chae-won Kim, Jeong-yun Seo, Hee-guk Chae, Yong-seo Koo

Abstract:

In this paper, we presented the LDO (low-dropout) regulator which enhanced the PSRR by applying the constant current source generation technique through the BGR (Band Gap Reference) to form the noise sensing circuit. The current source through the BGR has a constant current value even if the applied voltage varies. Then, the noise sensing circuit, which is composed of the current source through the BGR, operated between the error amplifier and the pass transistor gate of the LDO regulator. As a result, the LDO regulator has a PSRR of -68.2 dB at 1k Hz, -45.85 dB at 1 MHz and -45 dB at 10 MHz. the other performance of the proposed LDO was maintained at the same level of the conventional LDO regulator.

Keywords: LDO regulator, noise sensing circuit, current reference, pass transistor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589
2446 Deoiling Hydrocyclones Flow Field-A Comparison between k-Epsilon and LES

Authors: Maysam Saidi, Reza Maddahian, Bijan Farhanieh

Abstract:

In this research a comparison between k-epsilon and LES model for a deoiling hydrocyclone is conducted. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Potential of prediction for both methods of this complex swirl flow is discussed. Large eddy simulation method results have more similarity to experiment and its results are presented in figures from different hydrocyclone cross sections.

Keywords: Deoiling hydrocyclones, k-epsilon model, Largeeddy simulation, OpenFOAM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
2445 Analyzing Current Transformers Saturation Characteristics for Different Connected Burden Using LabVIEW Data Acquisition Tool

Authors: D. Subedi, S. Pradhan

Abstract:

Current transformers are an integral part of power system because it provides a proportional safe amount of current for protection and measurement applications. However, when the power system experiences an abnormal situation leading to huge current flow, then this huge current is proportionally injected to the protection and metering circuit. Since the protection and metering equipment’s are designed to withstand only certain amount of current with respect to time, these high currents pose a risk to man and equipment. Therefore, during such instances, the CT saturation characteristics have a huge influence on the safety of both man and equipment and on the reliability of the protection and metering system. This paper shows the effect of burden on the Accuracy Limiting factor/ Instrument security factor of current transformers and the change in saturation characteristics of the CT’s. The response of the CT to varying levels of overcurrent at different connected burden will be captured using the data acquisition software LabVIEW. Analysis is done on the real time data gathered using LabVIEW. Variation of current transformer saturation characteristics with changes in burden will be discussed.

Keywords: Accuracy limiting factor, burden, current transformer, instrument security factor, saturation characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3540
2444 Current Issues on Enterprise Architecture Implementation Evaluation

Authors: Fatemeh Nikpay, Rodina Binti Ahmad, Babak Darvish Rouhani

Abstract:

Enterprise Architecture (EA) is employed by enterprises for providing integrated Information Systems (ISs) in order to support alignment of their business and Information Technology (IT). Evaluation of EA implementation can support enterprise to reach intended goals. There are some problems in current evaluation methods of EA implementation that lead to ineffectiveness implementation of EA. This paper represents current issues on evaluation of EA implementation. In this regard, we set the framework in order to represent evaluation’s issues based on their functionality and structure. The results of this research not only increase the knowledge of evaluation, but also could be useful for both academics and practitioners in order to realize the current situation of evaluations.

Keywords: Current issues on EA, implementation evaluation, Evaluation, Enterprise Architecture, Evaluation of Enterprise Architecture Implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3964
2443 Realization of Electronically Tunable Current- Mode Multiphase Sinusoidal Oscillators Using CFTAs

Authors: Prungsak Uttaphut

Abstract:

An implementation of current-mode multiphase sinusoidal oscillators is presented. Using CFTA-based lossy integrators, odd and odd/even phase systems can be realized with following advantages. The condition of oscillation and frequency of oscillation can be orthogonally tuned. The high output impedances facilitate easy driving an external load without additional current buffers. The proposed MSOs provide odd or even phase signals that are equally spaced in phase and equal amplitude. The circuit requires one CFTA, one resistor and one grounded capacitor per phase without additional current amplifier. The results of PSPICE simulations using CMOS CFTA are included to verify theory.

Keywords: multiphase sinusoidal oscillator, current-mode, CFTA, lossy integrator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
2442 Study on Leakage Current Waveforms of Porcelain Insulator due to Various Artificial Pollutants

Authors: Waluyo, Parouli M. Pakpahan, Suwarno, Maman A. Djauhari

Abstract:

This paper presents the experimental results of leakage current waveforms which appears on porcelain insulator surface due to existence of artificial pollutants. The tests have been done using the chemical compounds of NaCl, Na2SiO3, H2SO4, CaO, Na2SO4, KCl, Al2SO4, MgSO4, FeCl3, and TiO2. The insulator surface was coated with those compounds and dried. Then, it was tested in the chamber where the high voltage was applied. Using correspondence analysis, the result indicated that the fundamental harmonic of leakage current was very close to the applied voltage and third harmonic leakage current was close to the yielded leakage current amplitude. The first harmonic power was correlated to first harmonic amplitude of leakage current, and third harmonic power was close to third harmonic one. The chemical compounds of H2SO4 and Na2SiO3 affected to the power factor of around 70%. Both are the most conductive, due to the power factor drastically increase among the chemical compounds.

Keywords: Chemical compound, harmonic, porcelain insulator, leakage current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
2441 Close Loop Controlled Current Nerve Locator

Authors: H. A. Alzomor, B. K. Ouda, A. M. Eldeib

Abstract:

Successful regional anesthesia depends upon precise location of the peripheral nerve or nerve plexus. Locating peripheral nerves is preferred to be done using nerve stimulation. In order to generate a nerve impulse by electrical means, a minimum threshold stimulus of current “rheobase” must be applied to the nerve. The technique depends on stimulating muscular twitching at a close distance to the nerve without actually touching it. Success rate of this operation depends on the accuracy of current intensity pulses used for stimulation .In this paper, we will discuss a circuit and algorithm for closed loop control for the current, theoretical analysis and test results is discussed and results is compared to previous techniques.

Keywords: Close Loop Control, Constant Current, Nerve Locator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
2440 Voltage Sag Effect on Three Phase Five Leg Transformers

Authors: M. R. Dolatian, A. Jalilian

Abstract:

The behavior of three phase five leg transformer under voltage sag is studied in this paper. This paper proposes a simple, practical model of a three phase-five leg, saturated transformer with accurate performance. Transformer saturation is produced when the voltage sag is recovered and it causes inrush current in transformer. Effects of voltage sag depth, duration and initial point on wave have been analyzed in this paper. Initial point on wave can produce maximum inrush current in five leg transformers while comparing with three leg transformers. The magnetic circuit symmetry of five leg transformer produces the more symmetrical shape of inrush current curves versus initial point on wave and sag duration than three leg transformer. The simulations show that current peak has a periodical dependence on sag duration and linear dependence on sag depth. Inrush current that is produced in three phase five leg transformer is higher than three phase three leg transformer.

Keywords: Inrush current, three phase five leg transformer, saturation, voltage sag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2876
2439 SFCL Location Selection Considering Reliability Indices

Authors: Wook-Won Kim, Sung-Yul Kim, Jin-O Kim

Abstract:

The fault current levels through the electric devices have a significant impact on failure probability. New fault current results in exceeding the rated capacity of circuit breaker and switching equipments and changes operation characteristic of overcurrent relay. In order to solve these problems, SFCL (Superconducting Fault Current Limiter) has rising as one of new alternatives so as to improve these problems. A fault current reduction differs depending on installed location. Therefore, a location of SFCL is very important. Also, SFCL decreases the fault current, and it prevents surrounding protective devices to be exposed to fault current, it then will bring a change of reliability. In this paper, we propose method which determines the optimal location when SFCL is installed in power system. In addition, the reliability about the power system which SFCL was installed is evaluated. The efficiency and effectiveness of this method are also shown by numerical examples and the reliability indices are evaluated in this study at each load points. These results show a reliability change of a system when SFCL was installed.

Keywords: Superconducting Fault Current Limiter, OptimalLocation, Reliability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
2438 Mathematical Modeling of the Influence of Hydrothermal Processes in the Water Reservoir

Authors: Alibek Issakhov

Abstract:

In this paper presents the mathematical model of hydrothermal processes in thermal power plant with different wind direction scenarios in the water reservoir, which is solved by the Navier - Stokes and temperature equations for an incompressible fluid in a stratified medium. Numerical algorithm based on the method of splitting by physical parameters. Three dimensional Poisson equation is solved with Fourier method by combination of tridiagonal matrix method (Thomas algorithm).

Keywords: thermal power plant, hydrothermal process, large eddy simulation, water reservoir

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
2437 The Effect of the Thermal Temperature and Injected Current on Laser Diode 808 nm Output Power

Authors: Hassan H. Abuelhassan, M. Ali Badawi, Abdelrahman A. Elbadawi, Adam A. Elbashir

Abstract:

In this paper, the effect of the injected current and temperature into the output power of the laser diode module operating at 808nm were applied, studied and discussed. Low power diode laser was employed as a source. The experimental results were demonstrated and then the output power of laser diode module operating at 808nm was clearly changed by the thermal temperature and injected current. The output power increases by the increasing the injected current and temperature. We also showed that the increasing of the injected current results rising in heat, which also, results into decreasing of the laser diode output power during the highest temperature as well. The best ranges of characteristics made by diode module operating at 808nm were carefully handled and determined.

Keywords: Laser diode, light amplification, injected current, output power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
2436 First Order Filter Based Current-Mode Sinusoidal Oscillators Using Current Differencing Transconductance Amplifiers (CDTAs)

Authors: S. Summart, C. Saetiaw, T. Thosdeekoraphat, C. Thongsopa

Abstract:

This article presents new current-mode oscillator circuits using CDTAs which is designed from block diagram. The proposed circuits consist of two CDTAs and two grounded capacitors. The condition of oscillation and the frequency of oscillation can be adjusted by electronic method. The circuits have high output impedance and use only grounded capacitors without any external resistor which is very appropriate to future development into an integrated circuit. The results of PSPICE simulation program are corresponding to the theoretical analysis.

Keywords: Current-mode, Quadrature Oscillator, Block Diagram, CDTA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
2435 Effect of Current Density, Temperature and Pressure on Proton Exchange Membrane Electrolyser Stack

Authors: Na Li, Samuel Simon Araya, Søren Knudsen Kær

Abstract:

This study investigates the effects of operating parameters of different current density, temperature and pressure on the performance of a proton exchange membrane (PEM) water electrolysis stack. A 7-cell PEM water electrolysis stack was assembled and tested under different operation modules. The voltage change and polarization curves under different test conditions, namely current density, temperature and pressure, were recorded. Results show that higher temperature has positive effect on overall stack performance, where temperature of 80 ℃ improved the cell performance greatly. However, the cathode pressure and current density has little effect on stack performance.

Keywords: PEM electrolysis stack, current density, temperature, pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
2434 Study on Discharge Current Phenomena of Epoxy Resin Insulator Specimen

Authors: Waluyo, Ngapuli I. Sinisuka, Suwarno, Maman A. Djauhari

Abstract:

This paper presents the experimental results of discharge current phenomena on various humidity, temperature, pressure and pollutant conditions of epoxy resin specimen. The leakage distance of specimen was 3 cm, that it was supplied by high voltage. The polluted condition was given with NaCl artificial pollutant. The conducted measurements were discharge current and applied voltage. The specimen was put in a hermetically sealed chamber, and the current waveforms were analyzed with FFT. The result indicated that on discharge condition, the fifth harmonics still had dominant, rather than third one. The third harmonics tent to be appeared on low pressure heavily polluted condition, and followed by high humidity heavily polluted condition. On the heavily polluted specimen, the peaks discharge current points would be high and more frequent. Nevertheless, the specimen still had capacitive property. Besides that, usually discharge current points were more frequent. The influence of low pressure was still dominant to be easier to discharge. The non-linear property would be appear explicitly on low pressure and heavily polluted condition.

Keywords: discharge current, third harmonic, fifth harmonic, epoxy resin, non-linear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387