Search results for: Wheeled mobile robot (WMR)
1173 Lyapunov-Based Tracking Control for Nonholonomic Wheeled Mobile Robot
Authors: Raouf Fareh, Maarouf Saad, Sofiane Khadraoui, Tamer Rabie
Abstract:
This paper presents a tracking control strategy based on Lyapunov approach for nonholonomic wheeled mobile robot. This control strategy consists of two levels. First, a kinematic controller is developed to adjust the right and left wheel velocities. Using this velocity control law, the stability of the tracking error is guaranteed using Lyapunov approach. This kinematic controller cannot be generated directly by the motors. To overcome this problem, the second level of the controllers, dynamic control, is designed. This dynamic control law is developed based on Lyapunov theory in order to track the desired trajectories of the mobile robot. The stability of the tracking error is proved using Lupunov and Barbalat approaches. Simulation results on a nonholonomic wheeled mobile robot are given to demonstrate the feasibility and effectiveness of the presented approach.Keywords: Mobile robot, trajectory tracking, Lyapunov, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23911172 Real-Time Control of a Two-Wheeled Inverted Pendulum Mobile Robot
Authors: S. W. Nawawi, M. N. Ahmad, J. H. S. Osman
Abstract:
The research on two-wheeled inverted pendulum (TWIP) mobile robots or commonly known as balancing robots have gained momentum over the last decade in a number of robotic laboratories around the world. This paper describes the hardware design of such a robot. The objective of the design is to develop a TWIP mobile robot as well as MATLAB interfacing configuration to be used as flexible platform comprises of embedded unstable linear plant intended for research and teaching purposes. Issues such as selection of actuators and sensors, signal processing units, MATLAB Real Time Workshop coding, modeling and control scheme will be addressed and discussed. The system is then tested using a wellknown state feedback controller to verify its functionality.
Keywords: Embedded System, Two-wheeled Inverted Pendulum Mobile Robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47721171 Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review
Authors: D. Vidhyaprakash, A. Elango
Abstract:
In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.
Keywords: Wheeled mobile robot (WMR), terrain, wheel slippage, odometry error, navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12511170 Self-Organizing Map Network for Wheeled Robot Movement Optimization
Authors: Boguslaw Schreyer
Abstract:
The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.
Keywords: SOM network, torque distribution, torque slope, wheeled robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5911169 Fabrication of Autonomous Wheeled Mobile Robot for Industrial Applications Using Appropriate Technology
Authors: M. M. Islam, Rajib K. Saha, Abdullah A. Amin, M. Z. Haq
Abstract:
The autonomous mobile robot was designed and implemented which was capable of navigating in the industrial environments and did a job of picking objects from variable height and delivering it to another location following a predefined trajectory. In developing country like Bangladesh industrial robotics is not very prevalent yet, due to the high installation cost. The objective of this project was to develop an autonomous mobile robot for industrial application using the available resources in the local market at lower manufacturing cost. The mechanical system of the robot was comprised of locomotion, gripping and elevation system. Grippers were designed to grip objects of a predefined shape. Cartesian elevation system was designed for vertical movement of the gripper. PIC18F452 microcontroller was the brain of the control system. The prototype autonomous robot was fabricated for relatively lower load than the industry and the performance was tested in a virtual industrial environment created within the laboratory to realize the effectiveness.
Keywords: Industrial application, autonomous mobile robot, appropriate technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25121168 Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach
Authors: Alexander S. Andreev, Olga A. Peregudova
Abstract:
In this paper we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electromechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present backstepping design based on the Euler approximate discretetime model of a continuous-time plant. Theoretical considerations are verified by numerical simulation.
Keywords: Actuator Dynamics, Backstepping, Discrete-Time Controller, Lyapunov Function, Wheeled Mobile Robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20591167 Analysis on Modeling and Simulink of DC Motor and its Driving System Used for Wheeled Mobile Robot
Authors: Wai Phyo Aung
Abstract:
Wheeled Mobile Robots (WMRs) are built with their Wheels- drive machine, Motors. Depend on their desire design of WMR, Technicians made used of DC Motors for motion control. In this paper, the author would like to analyze how to choose DC motor to be balance with their applications of especially for WMR. Specification of DC Motor that can be used with desire WMR is to be determined by using MATLAB Simulink model. Therefore, this paper is mainly focus on software application of MATLAB and Control Technology. As the driving system of DC motor, a Peripheral Interface Controller (PIC) based control system is designed including the assembly software technology and H-bridge control circuit. This Driving system is used to drive two DC gear motors which are used to control the motion of WMR. In this analyzing process, the author mainly focus the drive system on driving two DC gear motors that will control with Differential Drive technique to the Wheeled Mobile Robot . For the design analysis of Motor Driving System, PIC16F84A is used and five inputs of sensors detected data are tested with five ON/OFF switches. The outputs of PIC are the commands to drive two DC gear motors, inputs of Hbridge circuit .In this paper, Control techniques of PIC microcontroller and H-bridge circuit, Mechanism assignments of WMR are combined and analyzed by mainly focusing with the “Modeling and Simulink of DC Motor using MATLAB".Keywords: Control System Design, DC Motors, DifferentialDrive, H-bridge control circuit, MATLAB Simulink model, Peripheral Interface Controller (PIC), Wheeled Mobile Robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113041166 Receding Horizon Filtering for Mobile Robot Systems with Cross-Correlated Sensor Noises
Authors: Il Young Song, Du Yong Kim, Vladimir Shin
Abstract:
This paper reports on a receding horizon filtering for mobile robot systems with cross-correlated sensor noises and uncertainties. Also, the effect of uncertain parameters in the state of the tracking error model performance is considered. A distributed fusion receding horizon filter is proposed. The distributed fusion filtering algorithm represents the optimal linear combination of the local filters under the minimum mean square error criterion. The derivation of the error cross-covariances between the local receding horizon filters is the key of this paper. Simulation results of the tracking mobile robot-s motion demonstrate high accuracy and computational efficiency of the distributed fusion receding horizon filter.Keywords: Distributed fusion, fusion formula, Kalman filter, multisensor, receding horizon, wheeled mobile robot
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11991165 A Development of Home Service Robot using Omni-Wheeled Mobility and Task-Based Manipulation
Authors: Hijun Kim, Jungkeun Sung, Seungwoo Kim
Abstract:
In this paper, a Smart Home Service Robot, McBot II, which performs mess-cleanup function etc. in house, is designed much more optimally than other service robots. It is newly developed in much more practical system than McBot I which we had developed two years ago. One characteristic attribute of mobile platforms equipped with a set of dependent wheels is their omni- directionality and the ability to realize complex translational and rotational trajectories for agile navigation in door. An accurate coordination of steering angle and spinning rate of each wheel is necessary for a consistent motion. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A specialized anthropomorphic robot manipulator which can be attached to the housemaid robot McBot II, is developed in this paper. This built-in type manipulator consists of both arms with 3 DOF (Degree of Freedom) each and both hands with 3 DOF each. The robotic arm is optimally designed to satisfy both the minimum mechanical size and the maximum workspace. Minimum mass and length are required for the built-in cooperated-arms system. But that makes the workspace so small. This paper proposes optimal design method to overcome the problem by using neck joint to move the arms horizontally forward/backward and waist joint to move them vertically up/down. The robotic hand, which has two fingers and a thumb, is also optimally designed in task-based concept. Finally, the good performance of the developed McBot II is confirmed through live tests of the mess-cleanup task.Keywords: Holonomic Omni-wheeled Mobile Robot, Special-purpose, Manipulation, Home Service Robot
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24051164 Dual Mode Navigation for Two-Wheeled Robot
Authors: N.M Abdul Ghani, L.K. Haur, T.P.Yon, F Naim
Abstract:
This project relates to a two-wheeled self balancing robot for transferring loads on different locations along a path. This robot specifically functions as a dual mode navigation to navigate efficiently along a desired path. First, as a plurality of distance sensors mounted at both sides of the body for collecting information on tilt angle of the body and second, as a plurality of speed sensors mounted at the bottom of the body for collecting information of the velocity of the body in relative to the ground. A microcontroller for processing information collected from the sensors and configured to set the path and to balance the body automatically while a processor operatively coupled to the microcontroller and configured to compute change of the tilt and velocity of the body. A direct current motor operatively coupled to the microcontroller for controlling the wheels and characterized in that a remote control is operatively coupled to the microcontroller to operate the robot in dual navigation modes.Keywords: Two-Wheeled Balancing Robot, Dual Mode Navigation, Remote Control, Desired Path.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22051163 Development of Automatic Guided Mobile Robot Using Magnetic Position Meter
Authors: Geun-Mo Kim, Young-Jae Ryoo
Abstract:
In this paper, an automatic guided mobile robot using a new magnetic position meter is described. In order to measure the lateral position of a mobile robot, a new magnetic position meter is developed. The magnetic position meter can detect the position of a magnetic wire on the center of road. A mobile robot in designed with a sensing system, a steering system and a driving system. The designed mobile robot is tested to verify the performance of automatic guidance.
Keywords: Autonomous vehicle, magnetic position meter, steering, magnet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16531162 Steering Velocity Bounded Mobile Robots in Environments with Partially Known Obstacles
Authors: Reza Hossseynie, Amir Jafari
Abstract:
This paper presents a method for steering velocity bounded mobile robots in environments with partially known stationary obstacles. The exact location of obstacles is unknown and only a probability distribution associated with the location of the obstacles is known. Kinematic model of a 2-wheeled differential drive robot is used as the model of mobile robot. The presented control strategy uses the Artificial Potential Field (APF) method for devising a desired direction of movement for the robot at each instant of time while the Constrained Directions Control (CDC) uses the generated direction to produce the control signals required for steering the robot. The location of each obstacle is considered to be the mean value of the 2D probability distribution and similarly, the magnitude of the electric charge in the APF is set as the trace of covariance matrix of the location probability distribution. The method not only captures the challenges of planning the path (i.e. probabilistic nature of the location of unknown obstacles), but it also addresses the output saturation which is considered to be an important issue from the control perspective. Moreover, velocity of the robot can be controlled during the steering. For example, the velocity of robot can be reduced in close vicinity of obstacles and target to ensure safety. Finally, the control strategy is simulated for different scenarios to show how the method can be put into practice.Keywords: Steering, obstacle avoidance, mobile robots, constrained directions control, artificial potential field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9071161 Select-Low and Select-High Methods for the Wheeled Robot Dynamic States Control
Authors: Bogusław Schreyer
Abstract:
The paper enquires on the two methods of the wheeled robot braking torque control. Those two methods are applied when the adhesion coefficient under left side wheels is different from the adhesion coefficient under the right side wheels. In case of the select-low (SL) method the braking torque on both wheels is controlled by the signals originating from the wheels on the side of the lower adhesion. In the select-high (SH) method the torque is controlled by the signals originating from the wheels on the side of the higher adhesion. The SL method is securing stable and secure robot behaviors during the braking process. However, the efficiency of this method is relatively low. The SH method is more efficient in terms of time and braking distance but in some situations may cause wheels blocking. It is important to monitor the velocity of all wheels and then take a decision about the braking torque distribution accordingly. In case of the SH method the braking torque slope may require significant decrease in order to avoid wheel blocking.
Keywords: Select-high method, select-low method, torque distribution, wheeled robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4891160 Neural Network Controller for Mobile Robot Motion Control
Authors: Jasmin Velagic, Nedim Osmic, Bakir Lacevic
Abstract:
In this paper the neural network-based controller is designed for motion control of a mobile robot. This paper treats the problems of trajectory following and posture stabilization of the mobile robot with nonholonomic constraints. For this purpose the recurrent neural network with one hidden layer is used. It learns relationship between linear velocities and error positions of the mobile robot. This neural network is trained on-line using the backpropagation optimization algorithm with an adaptive learning rate. The optimization algorithm is performed at each sample time to compute the optimal control inputs. The performance of the proposed system is investigated using a kinematic model of the mobile robot.Keywords: Mobile robot, kinematic model, neural network, motion control, adaptive learning rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33331159 Mobile Robot Navigation Using Local Model Networks
Authors: Hamdi. A. Awad, Mohamed A. Al-Zorkany
Abstract:
Developing techniques for mobile robot navigation constitutes one of the major trends in the current research on mobile robotics. This paper develops a local model network (LMN) for mobile robot navigation. The LMN represents the mobile robot by a set of locally valid submodels that are Multi-Layer Perceptrons (MLPs). Training these submodels employs Back Propagation (BP) algorithm. The paper proposes the fuzzy C-means (FCM) in this scheme to divide the input space to sub regions, and then a submodel (MLP) is identified to represent a particular region. The submodels then are combined in a unified structure. In run time phase, Radial Basis Functions (RBFs) are employed as windows for the activated submodels. This proposed structure overcomes the problem of changing operating regions of mobile robots. Read data are used in all experiments. Results for mobile robot navigation using the proposed LMN reflect the soundness of the proposed scheme.Keywords: Mobile Robot Navigation, Neural Networks, Local Model Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20231158 Fuzzy Separation Bearing Control for Mobile Robots Formation
Authors: A. Bazoula, H. Maaref
Abstract:
In this article we address the problem of mobile robot formation control. Indeed, the most work, in this domain, have studied extensively classical control for keeping a formation of mobile robots. In this work, we design an FLC (Fuzzy logic Controller) controller for separation and bearing control (SBC). Indeed, the leader mobile robot is controlled to follow an arbitrary reference path, and the follower mobile robot use the FSBC (Fuzzy Separation and Bearing Control) to keep constant relative distance and constant angle to the leader robot. The efficiency and simplicity of this control law has been proven by simulation on different situation.
Keywords: Autonomous mobile robot, Formation control, Fuzzy logic control, Multiple robots, Leader-Follower.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17261157 Design and Simulation of a New Self-Learning Expert System for Mobile Robot
Authors: Rabi W. Yousif, Mohd Asri Hj Mansor
Abstract:
In this paper, we present a novel technique called Self-Learning Expert System (SLES). Unlike Expert System, where there is a need for an expert to impart experiences and knowledge to create the knowledge base, this technique tries to acquire the experience and knowledge automatically. To display this technique at work, a simulation of a mobile robot navigating through an environment with obstacles is employed using visual basic. The mobile robot will move through this area without colliding with any obstacle and save the path that it took. If the mobile robot has to go through a similar environment again, then it will apply this experience to help it move through quicker without having to check for collision.
Keywords: Expert system, knowledge base, mobile robot, visual basic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15321156 Adaptive Path Planning for Mobile Robot Obstacle Avoidance
Authors: Rong-Jong Wai, Chia-Ming Liu
Abstract:
Generally speaking, the mobile robot is capable of sensing its surrounding environment, interpreting the sensed information to obtain the knowledge of its location and the environment, planning a real-time trajectory to reach the object. In this process, the issue of obstacle avoidance is a fundamental topic to be challenged. Thus, an adaptive path-planning control scheme is designed without detailed environmental information, large memory size and heavy computation burden in this study for the obstacle avoidance of a mobile robot. In this scheme, the robot can gradually approach its object according to the motion tracking mode, obstacle avoidance mode, self-rotation mode, and robot state selection. The effectiveness of the proposed adaptive path-planning control scheme is verified by numerical simulations of a differential-driving mobile robot under the possible occurrence of obstacle shapes.Keywords: Adaptive Path Planning, Mobile Robot ObstacleAvoidance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21721155 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots
Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar
Abstract:
Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.
Keywords: Agricultural mobile robot, image processing, path recognition, Hough transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17891154 Localization of Mobile Robots with Omnidirectional Cameras
Authors: Tatsuya Kato, Masanobu Nagata, Hidetoshi Nakashima, Kazunori Matsuo
Abstract:
Localization of mobile robots are important tasks for developing autonomous mobile robots. This paper proposes a method to estimate positions of a mobile robot using a omnidirectional camera on the robot. Landmarks for points of references are set up on a field where the robot works. The omnidirectional camera which can obtain 360 [deg] around images takes photographs of these landmarks. The positions of the robots are estimated from directions of these landmarks that are extracted from the images by image processing. This method can obtain the robot positions without accumulative position errors. Accuracy of the estimated robot positions by the proposed method are evaluated through some experiments. The results show that it can obtain the positions with small standard deviations. Therefore the method has possibilities of more accurate localization by tuning of appropriate offset parameters.
Keywords: Mobile robots, Localization, Omnidirectional camera.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23361153 Energy Management Techniques in Mobile Robots
Authors: G. Gurguze, I. Turkoglu
Abstract:
Today, the developing features of technological tools with limited energy resources have made it necessary to use energy efficiently. Energy management techniques have emerged for this purpose. As with every field, energy management is vital for robots that are being used in many areas from industry to daily life and that are thought to take up more spaces in the future. Particularly, effective power management in autonomous and multi robots, which are getting more complicated and increasing day by day, will improve the performance and success. In this study, robot management algorithms, usage of renewable and hybrid energy sources, robot motion patterns, robot designs, sharing strategies of workloads in multiple robots, road and mission planning algorithms are discussed for efficient use of energy resources by mobile robots. These techniques have been evaluated in terms of efficient use of existing energy resources and energy management in robots.
Keywords: Energy management, mobile robot, robot administration, robot management, robot planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15711152 Predictive Model of Sensor Readings for a Mobile Robot
Authors: Krzysztof Fujarewicz
Abstract:
This paper presents a predictive model of sensor readings for mobile robot. The model predicts sensor readings for given time horizon based on current sensor readings and velocities of wheels assumed for this horizon. Similar models for such anticipation have been proposed in the literature. The novelty of the model presented in the paper comes from the fact that its structure takes into account physical phenomena and is not just a black box, for example a neural network. From this point of view it may be regarded as a semi-phenomenological model. The model is developed for the Khepera robot, but after certain modifications, it may be applied for any robot with distance sensors such as infrared or ultrasonic sensors.
Keywords: Mobile robot, sensors, prediction, anticipation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14501151 Dead-Reckoning Error Calibration using Celling Looking Vision Camera
Authors: Jae-Young Choi, Sung-Gaun Kim
Abstract:
This paper suggests a calibration method to reduce errors occurring due to mobile robot sliding during location estimation using the Dead-reckoning. Due to sliding of the mobile robot caused between its wheels and the road surface while on free run, location estimation can be erroneous. Sliding especially occurs during cornering of mobile robot. Therefore, in order to reduce these frequent sliding errors in cornering, we calibrated the mobile robot-s heading values using a vision camera and templates of the ceiling.Keywords: Dead-reckoning, Localization, Odomerty, Vision Camera
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17831150 Underneath Vehicle Inspection Using Fuzzy Logic, Subsumption and OpenCV Library
Authors: Hazim Abdulsada
Abstract:
The inspection of underneath vehicle system has been given significant attention by governments after the threat of terrorism become more prevalent. New technologies such as mobile robots and computer vision are led to have more secure environment. This paper proposed that a mobile robot like Aria robot can be used to search and inspect the bombs under parking a lot vehicle. This robot is using fuzzy logic and subsumption algorithms to control the robot that movies underneath the vehicle. An OpenCV library and laser Hokuyo are added to Aria robot to complete the experiment for under vehicle inspection. This experiment was conducted at the indoor environment to demonstrate the efficiency of our methods to search objects and control the robot movements under vehicle. We got excellent results not only by controlling the robot movement but also inspecting object by the robot camera at same time. This success allowed us to know the requirement to construct a new cost effective robot with more functionality.
Keywords: Fuzzy logic, Mobile robots, OpenCV, Subsumption, Under vehicle inspection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28121149 Trajectory Tracking of a 2-Link Mobile Manipulator Using Sliding Mode Control Method
Authors: Abolfazl Mohammadijoo
Abstract:
In this paper, we are investigating sliding mode control approach for trajectory tracking of a two-link-manipulator with wheeled mobile robot in its base. The main challenge of this work is dynamic interaction between mobile base and manipulator which makes trajectory tracking more difficult than n-link manipulators with fixed base. Another challenging part of this work is to avoid chattering phenomenon of sliding mode control that makes lots of damages for actuators in real industrial cases. The results show the effectiveness of sliding mode control approach for desired trajectory.
Keywords: Mobile manipulator, sliding mode control, dynamic interaction, mobile robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5081148 Wrap-around View Equipped on Mobile Robot
Authors: Sun Lim, Sewoong Jun, Il-Kyun Jung
Abstract:
This paper presents a wrap-around view system with 4 smart cameras module and remote motion mobile robot control equipped with smart camera module system. The two-level scheme for remote motion control with smart-pad(IPAD) is introduced on this paper. In the low-level, the wrap-around view system is controlled or operated to keep the reference points lying around top view image plane. On the higher level, a robot image based motion controller is utilized to drive the mobile platform to reach the desired position or track the desired motion planning through image feature feedback. The design wrap-around view system equipped on presents such advantages as follows: 1) a satisfactory solution for the FOV and affine problem; 2) free of any complex and constraint with robot pose. The performance of the wrap-around view equipped on mobile robot remote control is proven by experimental results.Keywords: four smart camera, wrap-around view, remote mobile robot control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18161147 Design and Implementation a Fully Autonomous Soccer Player Robot
Authors: S. H. Mohades Kasaei, S. M. Mohades Kasaei, S. A. Mohades Kasaei, M. Taheri, M. Rahimi, H. Vahiddastgerdi, M. Saeidinezhad
Abstract:
Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensive Omni directional mobile robot. Such a robot can respond more quickly and it would be capable for more sophisticated behaviors with multi-sensor data fusion algorithm for global localization base on the data fusion. This paper has tried to focus on the research improvements in the mechanical, electrical and software design of the robots of team ADRO Iran. The main improvements are the world model, the new strategy framework, mechanical structure, Omni-vision sensor for object detection, robot path planning, active ball handling mechanism and the new kicker design, , and other subjects related to mobile robotKeywords: Mobile robot, Machine vision, Omni directional movement, Autonomous Systems, Robot path planning, Object Localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21531146 Wireless Power Transfer Application in GSM Controlled Robot for Home Automation
Authors: Kaibalya Prasad Panda, Nirakar Behera, Kamal Lochan Biswal
Abstract:
The aim of this paper is to combine the concept of wireless power transfer and GSM controlled robot for the application of home automation. The wireless power transfer concept can be well utilized to charge battery of the GSM controlled robot. When the robot has completed its task, it can come to the origin where it can charge itself. Robot can be charged wirelessly, when it is not performing any task. Combination of GSM controlled robot and wireless power transfer provides greater advantage such as; no wastage of charge stored in the battery when the robot is not doing any task. This provides greater reliability that at any instant, robot can do its work once it receives a message through GSM module. GSM module of the robot and user mobile phone must be interfaced properly, so that robot can do task when it receives message from same user mobile phone, not from any other phone. This paper approaches a robotic movement control through the smart phone and control of GSM robot is done by programming in Arduino environment. The commands used in controlling the robot movement are also explained.
Keywords: Arduino, automation, GSM controlled robot, GSM module, wireless power transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14181145 An AR/VR Based Approach Towards the Intuitive Control of Mobile Rescue Robots
Authors: Jürgen Roßmann, André Kupetz, Roland Wischnewski
Abstract:
An intuitive user interface for the teleoperation of mobile rescue robots is one key feature for a successful exploration of inaccessible and no-go areas. Therefore, we have developed a novel framework to embed a flexible and modular user interface into a complete 3-D virtual reality simulation system. Our approach is based on a client-server architecture to allow for a collaborative control of the rescue robot together with multiple clients on demand. Further, it is important that the user interface is not restricted to any specific type of mobile robot. Therefore, our flexible approach allows for the operation of different robot types with a consistent concept and user interface. In laboratory tests, we have evaluated the validity and effectiveness of our approach with the help of two different robot platforms and several input devices. As a result, an untrained person can intuitively teleoperate both robots without needing a familiarization time when changing the operating robot.
Keywords: Teleoperation of mobile robots, augmented reality, user interface, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18481144 Mobile Robot Path Planning Utilizing Probability Recursive Function
Authors: Ethar H. Khalil, Bahaa I. Kazem
Abstract:
In this work a software simulation model has been proposed for two driven wheels mobile robot path planning; that can navigate in dynamic environment with static distributed obstacles. The work involves utilizing Bezier curve method in a proposed N order matrix form; for engineering the mobile robot path. The Bezier curve drawbacks in this field have been diagnosed. Two directions: Up and Right function has been proposed; Probability Recursive Function (PRF) to overcome those drawbacks. PRF functionality has been developed through a proposed; obstacle detection function, optimization function which has the capability of prediction the optimum path without comparison between all feasible paths, and N order Bezier curve function that ensures the drawing of the obtained path. The simulation results that have been taken showed; the mobile robot travels successfully from starting point and reaching its goal point. All obstacles that are located in its way have been avoided. This navigation is being done successfully using the proposed PRF techniques.Keywords: Mobile robot, path planning, Bezier curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463