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    Abstract   Developing techniques for mobile robot 
navigation constitutes one of the major trends in the current 
research on mobile robotics. This paper develops a local 
model network (LMN) for mobile robot navigation. The 
LMN represents the mobile robot by a set of locally valid 
submodels that are Multi-Layer Perceptrons (MLPs). 
Training these submodels employs Back Propagation (BP) 
algorithm. The paper proposes the fuzzy C-means (FCM) in 
this scheme to divide the  input space to sub regions, and 
then a submodel (MLP) is identified to represent a particular 
region. The submodels then are combined in a unified 
structure. In run time phase, Radial Basis Functions (RBFs) 
are employed as windows for the activated submodels. This 
proposed structure overcomes the problem of changing 
operating regions of mobile robots. Read data are used in all 
experiments. Results for mobile robot navigation using the 
proposed LMN reflect the soundness of the proposed 
scheme.    

   Keywords: Mobile Robot Navigation, Neural Networks, 
and Local Model Networks. 

1. INTRODUCTION 

           AVIGATION  of  Mobile  Robots  is  a  broad  topic,   
           covering  a  large spectrum of different technologies 
and applications. Levitt, and Lawton [1] summarized the 
general problem of mobile robot navigation by three 
questions: "Where am I?," "Where am I going?," and "How 
should I get there?." This paper surveys the state-of-the-art 
in sensors, systems, methods, and technologies that aim at 
answering the first question, that is: robot positioning in its 
environment. Researchers in the area of mobile robot 
navigation have surveyed two main navigation approaches 
[2]. One is functional, or horizontal decomposition. The 
other is behavioural or vertical decomposition. The former 
approach is sequential and involves modeling and planning. 
The latter approach is parallel and requires exploration and 
map building. Both approaches use many distinct sensory 
inputs and computational processes. Decisions such as turn 
left, turn right, run or stop are made on the basis of those 
inputs [3]. 
    Mobile robots have a large number of applications in 
industry, hazardous environments, and surveillance. Using 
the environmental information perceived at each instant as 
well as data from previous instants, a strategy should be 
pursued to enable the robot to reach its target position 
without hitting obstacles. Researchers have used many 
techniques for obstacle avoidance [2] and [4]. The basic task  
in  such  application  is  the  perception  of  the  environment 
through one or more sensors. Some authors have proposed 
that one type of sensor devices such as sonar, laser, vision 
and infrared be adopted [5] and [6], whereas others have 

recommended heterogeneous systems using different types 
[7]. Based on sensors information a complete conversion 
algorithm for unstructured environment was proposed [8]. 
    Within the last decade, there has been an interest in being 
able to co-ordinate multiple mobile robots. This interest has 
stemmed both from practical considerations - multiple 
robots are able to handle tasks that individual machines 
cannot, for instance carrying large, bulky and heavy loads - 
and from a desire to create artificial systems that mimic 
nature in particular by exhibiting some of the primary 
behaviors observed in human and other animal societies.  
    A neural network is a parallel distributed processor 
comprising several simple computational units known as 
neurons [9], [10], [11], and [12]. Neural networks have 
generated considerable interest as an alternative nonlinear 
modeling tool  [13]. They have some limitations. The 
limited structure of a neural network is the major limitation 
in its function approximation property.  This means that new 
information may erase the previously learnt one  [14].  
    Since most industrial processes operate under feedback 
control within a small region around a given operating point, 
neural networks with global support functions such as the 
Multilayer Perceptron (MLP) are sufficient for modeling 
and control them, however, if the operating point is 
changed, the function approximation of MLP is degraded 
[15]. Replacing the global support function (sigmoid 
function) with local support function (Gaussian function), 
results networks with local support function as radial basis 
function (RBF).  
    Recent research has suggested that fine partitioning of the 
input space, in which neural basis functions active,  is not 
necessary. It is sufficient that the portioning procedure 
should simply split the input space into the expected 
operating regions of the plant [16]. The paper employs  a  
local model network (LMN) that adopts this philosophy by 
forming a global system model from a set of locally valid 
submodels for mobile robot navigation. The idea was 
borrowed from [17]. The paper proposes fuzzy c-means 
(FCM) [18] for portioning the input space and 
discriminating the data of each submodel of the LMN. The 
outputs of each submodel are  passed through a local 
processing function that effectively acts to generate a 
window of validity for the model in question. The resulted 
localized outputs are then combined as a weighted sum at 
the model output node. Each submodel  is a MLP. Back 
propagation algorithm is employed to adapt the weights of 
each submodel. The proposed scheme was compared with 
the feedforward neural network scheme and RBF scheme.  
    This paper is organized as follows: Section II describes  
the mobile robot model. Section III briefly explains a set of 
neural networks used. The proposed LMN is detailed in 
section IV. Results using real data  are depicted in section V.  
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II. MOBILE ROBOT MODEL 

A mobile robot is an autonomous vehicle that navigates in 

an environment to perform certain tasks. The mobile robot 

used in this research has three wheels. The two front wheels 

(left and right) are powered by separate stepper motors, and 

the rear wheel is free. The robot has an array of ultrasonic 

sensors for measuring the distances of obstacles around it 

and an infrared sensor for detecting the bearing of the target. 

The distances between the robot and obstacles act as 

repulsive forces, and the bearing of the target acts as an 

attractive force. The model of the employed mobile robot is 

obtained practically by recording a set of input-output data 

pairs using its sensors [2]. Multiple mobile robots are uses a 

set of robots to achieve complex tasks as mentioned above. 

Each mobile robot acts as an obstacle for other mobile 

robots. Each data set comprises of four inputs left distance, 

front distance, right distance, and target angle, and one 

output that is steering angle of mobile robot.  

    Analysis of mobile robot co-ordinates and directions used 

for adaptive navigation briefly reviewed [2]. The co-

ordinates of robot ‘n’ at time t are xn(t) and yn(t), and vn(t) is 

its velocity. The start and goal points of the robots are (xn0,
yn0) and (x0n, y0n) respectively. Velocity directional angles 

of the robot are n(t), where )(t)( n 20 and n(t) is 

measured from the X axis. The initial value is  n(0). The 

equation of motion of the nth robot is given as: 

(t))(t)  Sin( v(t)y

(t))(t) Cos( v(t)x

nnn

nnn
                                  (1) 

For obstacle avoidance and navigation, the modulus of 

angular velocity tn  is taken to be less than or equal to 

the maximum angular velocity:  

min

max

n

n

n
r

v
(t)                            (2) 

It is assumed that robots turn left or right with a minimum 

rotation radius rnmin (0.4m) because of their physical 

dimensions. vn max (0.35 m/Sec.) is the maximum velocity of 

robots. 

    If there were no obstacles, the robots would instantly turn 

towards their goals at the start. This would be the optimal 

path for each robot but is impossible due to the robot 

dynamics.  

Therefore, the following navigation law is proposed: 

(t)(t)(t) n
*
nnn             (3) 

where n is a positive constant. 

As the robot has to turn a maximum of  radians at a time, 

n is taken as 
min

max

n

n

r
v

 . 

    For better understanding, the navigation of robots without 

obstacles is now considered. Let )t(*

nt be the desired angle 

for navigation of the robot to the goal  i.e.  

)(* t
n

= )(* t
nt

where, 

)()()(

)()()(
)(*

ttt

ttt
t

nnn

nnn

nt
         (4) 

2)(0,
)(

)(
tan)( 1 t

tx

ty
t

n

n

n

n
           (5) 

)(t
n

 is the position angle of the target. 

    If a robot detects a target in the beginning (in a no-

obstacle scenario) then 

)0()0()0( *

ntnnn
                                 (6)       

However, since )(tn  changes with the coordinates of the 

robot, (xn(t), yn(t)), )(* tnt also changes with time.  

    Three types of distance sensors are used for the adaptive 

navigation technique described in this paper [2]. They are: 

dnc; Central –front, dnl; Central-Left, dnr; Central-Right, dnl

and dnr are inclined to the center at an angle this equals 

in the experiments carried out) to the central sensor dnc.

The following assumptions have been made. 

The maximum measurable range of the distance sensor is 

dnmax (taken as 3rnmin). When the sensor does not detect an 

obstacle or the distance is greater than dnmax, then the sensor 

output is mathematically taken as a negative value (–1).  

There are eight possibilities for avoiding obstacles. For 

example, when the obstacles are detected in three directions 

and nrnl dd , the robot should steer to the left. Letting 

be the angle, the robot should turn to the left by ( /2 - 

More detail can be found in [2]. 

III. NEURAL NETWORKS IN MOBILE ROBOT NAVIGATION 

This section describes briefly, a set of neural networks such 

as MLP and RBF that are employed for controlling mobile 

robot, as shown in Fig.1.  

LD, RD, FD, TA 

Steering angle 

A neural 

network 

A mobile robot 

Fig. 1. Mobile robot navigation using neural network 

   A. Feedforward Neural Networks 

Recently, feed forward neural networks e.g. MLP have 

been shown to obtain successful results in systems 

identification and control [13]. Such neural networks are 

static input / output mapping schemes that can approximate 

a continuous functions to an arbitrary degree of accuracy. 

The MLP neural network is composed of at least three 

layers, input, output and hidden layers. A neuron at a 

particular layer is connected to a set of neurons at the 

previous layer by a set of weights. The output yi of a neuron 

is the weighted sum of the outputs coming from the neurons 

in the previous layer. That is : 

XWnetey T

iji
inet

i ),1/(1                    (7) 

where ]1,0[ is a weighting factor and Wij
T  is the weight 

that links the ith  neuron in a layer with the  jth    input.       
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    Backpropagation (BP) algorithm is employed to optimize 

the parameters of the network. When an input-output pair, 

(u(k), yd(k)), is presented to the network at time k, the error 

function at the network output is defined as: 
2

)()(
2

1
kykyE dk

                                      (8) 

where yd(k) and y(k) are the desired and the actual outputs 

respectively.

The general weight modification in the gradient descent 

method is:  

w

E
w

k
                             (9) 

where ]1,0[ is the learning rate. 

B.  Radial Basis Function Networks 

    Radial Basis Function network is a local network. That is 

that its universe of discourse is covered with a set of locally 

tuned radial basis functions. Research has been conducted 

using Radial Basis Function (RBF) networks in many areas 

such as pattern recognition, system identification and 

control and signal processing [14] and [17]. The main 

advantage of using this structure of network is that training 

will involve linear optimisation and can be performed on-

line [19]. Structurally, it consists of three layers named the 

input, output and hidden layers. The RBF network simply 

approximates a continuous mapping, 
mn RRf: , by 

linearly combining a set of non-linear basis functions. This 

mapping can be described as: 
ii

*

N

i

i

k
(x)k cxWy

1

                    (10) 

where )(xky  is the thk output of the network, N is the 

number of hidden units, nRx  is an input vector, ni Rc

is the centre of the thi  hidden unit, (.)
i  is the thi radial

basis function and i

kW  is the weight from the thi hidden unit 

to the thk output. 

    Although there exist many choices of (.)
i , Moody and 

Darken [17] have reported that Gaussian type functions have 

the desirable feature of allowing the hidden units to be 

locally tuned. The Gaussian function is: 

2

2

exp
i

i

x
i cx

          (11) 

where 
icx  is a distance measure, usually taken to be 

the Euclidean norm. Each basis function, (.)
i , is centred at 

some point, ic , in the input-output space. Because of the 

local nature of this type of function, it was employed in this 

work. The property is controlled by the variance, i , which 

is a vital factor that speeds up learning. The RBF network 

has its origin in function approximation techniques and has a 

well-established theoretical basis [20].  Research has also 

been done to optimise RBF networks. Optimisation 

techniques were employed to adjust the parameters of the 

RBF networks, with linear least-squares optimisation 

applied to determine the height of an RBF, and the k-means 

clustering and nearest-neighbour algorithms  used  to  locate  

the centre, 
ic , and the variance, i  [21]. However, the latter 

algorithms yield poor centre and width (variance) selection 

and hence the overall performance of the controlled process 

will not be optimal. To achieve good results in this situation 

all RBF parameters have to be modified via a non-linear 

optimisation operation in the same manner as that 

encountered with MLPs. This means that the search 

direction is basically the negative of the gradient of a cost 

function at a particular weight. BP is a simple gradient 

descent algorithm with poor convergence properties 

resulting in long training times for MLP networks.  

IV. LOCAL  MODEL NETWORKS 

The proposed LMN shown in Fig. 2.1. is a set of  submodels 

depicted in Fig. 2.2. that represent a dynamic system be 

modeled at different operating points. Each submodel is a 

MLP network described in section III.  The output of these 

local models are passing through a RBF that stands as a 

window for an activated model. The outputs of the fired 

submodels are weighted  to give the total LMN output. 

These section describes the learning algorithm of MLP 

submodel and the clustering algorithm used to identify the 

data of each submodel. 

    First, two phases, the learning phase and the recall phase, 

are employed to build a particular LMN. The former 

consists of two learning segments, one structural and the 

other parameter-based. The former structured using the 

FCM that identifies a submodel of the LMN around its 

operating point. This is our first contribution in this paper. 

The submodels of the LMN are trained using the BP 

algorithm. A trained neural network basically represents a 

static knowledge base as mentioned above. Some important 

features have been added to the traditional neural network to 

yield evolving connectionist systems. These features are on-

line learning, knowledge base adaptation and incremental 

learning. Learning schemes in  neural  networks  can  be  

classified   generally   into   three  categories, supervised, 

reinforcement and unsupervised. This paper employs the BP 

algorithm as supervised algorithm and FCM algorithm as 

unsupervised algorithm to construct the proposed LMN.  

    In the supervised scheme, a system should be directed by 

an external signal to achieve a desired performance. A 

common supervised learning method, the error BP scheme, 

is based on the steepest descent method. The major 

drawback of this method is its slow speed of learning and 

the local minimum problem that makes it not suitable for 

real-time application. Adding a momentum term to this 

scheme can sometimes stabilise and speed up the network 

convergence in training. A number of powerful second-

order techniques have also been proposed to accelerate MLP 

as mentioned previously. The BP algorithm with these 

modifications has successfully been used in many networks, 

e.g. MLP. Mathematically, each weight, ijw , is modified 

according to the following equation [11]:  

(k)ij*

)(kij

)(k
)(kij wµ

w

E
*w

1

1
1          (12) 

where 
2ˆ

2

1
yyE d  , dy and ŷ  are the desired  and 

actual outputs of the network and and  are the learning 

rate and the momentum coefficient respectively. 
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    Second, conventional clustering algorithms use crisp 

memberships for allocating samples to clusters. Where the 

input sample is assigned to one and only one cluster or 

category. However, in practice, a sample may be assigned to 

more than one class. One of the well-known clustering 

algorithms that allow fuzzy memberships is the fuzzy c-

means (FCM) clustering algorithm. This paper employs this 

algorithm to segment the universe of discourse of mobile 

robots. Fuzzy c-means is an iterative clustering approach. It  

x1

.

.

.

xi

.

.

.

xn

y

A submodel-1 

A submodel-i  

A submodel-m 

Fig.2.a. A typical  structure of the  proposed LMN 

x1

.

.

.

xi

.

.

.

xn

yi

A MLP network

*

Fig.2.b. A submodel of the proposed LMN 

resembles the maybe more well-known technique c-means 

but it uses fuzzy membership functions instead of hard 

values [17]. Fuzzy c-means partitions the data set X = 

x1,x2,...,xn into c fuzzy subsets ui where the value ui(xk) is the 

membership of xk in class i. The values of ui(xk) are arranged 

as a c x n matrix U. The method approximately minimises 

the sum of squared error function defined as: 
n

k

ik

m

ik

c

i

m vxuXVUJ
11

)():,(         (13) 

where V= v1,v2,…,vc is a set of cluster centers and m>1 is a 

weighting exponent affecting the fuzziness of u. The 

parameters (U,V) may minimise Jm only if  uik and vi are 

defined as: 
1

12

1

)/(m

jk

ik
c

j
ik

vx

vx
u  for all i,k         (14) 

m
ik

n

k

k
m

ik

n

k
i

u

xu

v

1

1
      for all i               (15) 

    The MLP submodel trained by BP algorithm can be 

identified a round its operating point using FCM that is 

employed for clustering the input domain of the mobile 

robot. A RBF performs a window for each submodel’s 

output. It given a higher degree (  [0,1]) for the active 

submodel and a lower degree for the others.  The LMN 

output can be described as: 

)().(),(
1

M

i
ii

ffy            (16) 

where, )(if  represents  a local submodel, M is the 

number of submodels, and )(
i

 is a RBF defined in (11).  

V. TESTING 

In this section, MLP, RBF and the proposed LMN have 

been implemented for controlling the mobile robot described 

in section II. The root mean square (RMS) error defined in 

(17) was computed for the trained networks using the test 

data set.  

2

1

))()((
1

kyky
T

RMS
d

T

i

                   (17) 

where yd(k) and y(k) are the desired and actual outputs 

respectively, and T is the number of samples during the run 

time. Design a particular mobile robot usually uses the 

expertise and common sense [22]. In this experiments, a 500 

data set used in  learning different types neural networks 

used in this paper [2], each data set comprises of five 

parameters, left distance (LD), front distance (FD),  right 

distance (RD), target bearing (TA) and change in steering 

angle (SA). Fig. 3 shows a real robot used to generate the 

input output data depicted in Table I.  More details for the 

hardware configuration can be found in [2]. 

    In this experiments, one mobile robot, one target and four 

obstacles are employed for  comparison result. For a set of 

robots, each mobile robot acts as an obstacle for the other 

robots as mentioned in section II. The experiments 

simulated at the same conditions mentioned above  using the 

practical data sets on a PC operating under WINDOWS 

NT/95/98/2000/XP. The PC type is AMD Athlon 900MHz, 

cache memory 256k and RAM 64 k. 

Fig. 3.  A real mobile robot 

A. MLP-based Mobile Robot Navigation  

    The MLP neural network used in this work has three 

layers, input, output and hidden layer. The input layer has 

four neurons, three for receiving the values of the distances 

from obstacles in front and to the left and to the right of the 

robot and one for the target bearing. If no target is detected, 

the input to the fourth neuron is set to 0. The output layer 

has a single neuron,  which  produces  the  steering  angle  to  
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TABLE I 

 REAL DATA SET FOR MOBILE ROBOT NAVIGATION [2] 

LD FD RD TA SA 

      

                      …              …              …              …              … 

                      14     37     15              10              6 

     14              36              15              10              6 

     14              35              15              10              6 

                      14              34              15              10              6            

                      14              33              15              10              6 

                       …             …              …              …             … 

control the direction of movement of the mobile robot. The 

BP algorithm described in section III used for training the 

MLP network. Fig. 4 shows the mobile robot navigation in a 

bounded space using a set of obstacles. It successes to avoid 

the obstacles and reach the target in 1142.2 m sec. The RMS 

error defined in (17) was computed. That is  0.62. 

Fig. 4. The path traced by single mobile robot controlled using the MLP 

    This experiment was performed to multiple mobile robots 

navigation. For example Fig. 5 shows the four mobile robots 

navigation in a bounded space using a set of obstacles and 

one target. The time was taken by four robots navigation to 

avoid the obstacles, is 1492.1 m. Sec.  

Fig. 5. The path traced by 4 mobile robots controlled using the MLP  

   B.  RBF neural network-based mobile robot navigation  
      

    A RBF network with one hidden layer is used in this 

paper to control the mobile robot navigation. For 

comparison reasons, the network was tested at the same 

MLP structure and conditions. The RMS value defined in 

(17) was computed. That is 3.4. Increasing the hidden nodes 

of the RBF network, decreases the RMS value. For example, 

222 neurons at the hidden layer of the RBF network gives a 

similar RMS value (0.6) obtained by MLP network. The 

mobile robot navigation using RBF network shown in Fig. 

6.

     It successes to reach the target in 53481.6 m. Sec. at 0.6 

RMS value. For multiple mobile robots navigation using 

RBF network, the robots take long time to reach the target 

and sometimes robots can't reach the robot. Fig. 7 shows the 

four mobile robots navigation in a bounded space using a set 

of obstacles and one target. The time was taken by four 

robots navigation to avoid the obstacles, is 70251.5 m. Sec. 

This is because RBF network ia a linear combination of a 

large set of nonlinear functions and the Gaussian function of  

RBF network responds only to a small region of the input 

space where the Gaussian is centered.

Fig. 6.  Single mobile robot navigation using RBF

Fig. 7. The path traced by 4 mobile robots controlled using the RBF 

   C.  LMN-based mobile robot navigation  

    The proposed LMN described above is applied on mobile 

robot navigation in this experiments. First, the data set of the 

input space was divided into two regions using FCM 

clustering technique described above. MLP described above 

are again employed as submodels. RBF defined in (11) used 

as a submodel window. Increasing the number of clusters 

(regions), increases the number of submodels, and decreases 

the RMS error. It also decreases the time needed for the 

robot to reach its target.

    In the first experiment, Fig. 8 shows the mobile robot 

navigation in a bounded space using a set of obstacles. The 

number of clusters obtained using FCM was 11 clusters. The 

robot successes to avoid the obstacles and reach the target in 

986.1 m. Sec. The RMS error defined in (17) was computed. 

That is  0.1. This experiment was performed to multiple 

mobile robots navigation. For example Fig. 9 shows the four 

mobile robots navigation in a bounded space using a set of 

obstacles and one target. The time was taken by four robots 

navigation to avoid the obstacles, is 1232.3 m. Sec.  

    Experimentally, we found that decreasing the number of 

training data set used for MLP learning, decreases the RMS 

error and the run time required to the robot to achieve its 

task. That leads to the proposed LMN trained by BP and 

employed  FCM algorithm for clustering purposes. For 

comparison reasons, Table II shows the run time required 

for a set of mobile robot navigation to achieve their tasks.  
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Fig. 8. Single mobile robot navigation using LMN 

Fig.9. The path traced by 4 mobile robots controlled using the LMN 

TABLE II 

 TIME TAKEN (m. Sec.) BY MULTIPLE MOBILE ROBOTS 

NAVIGIATION USING DIFFERENT SCHEMES  

     Number of              Time taken          Time taken           Time taken

     mobile robots          using MLP          using RBF           using  LMN

              

              

              1                      1142.20             53481.60                986.10

              2                      1361.99             60521.30                1121.30

              4                      1492.10             70251.50                1232.30

              6                      3085.84             80123.60                 2523.19

              8                      4817.07             125645.70               2454.71

IV.  CONCLUSIONS

The paper developed a local model network, that adapts the 

philosophy of forming a global system model from a set of 

locally valid submodels. These submodels are a set of  MLP 

trained by BP algorithm. The paper also proposed the FCM 

to identify a submodel data set from the mobile robot 

domain. The proposed LMN was implemented for mobile 

robots navigation.  Compared with MLP and RBF networks, 

the developed LMN scheme has three notable features, 

locality, generality and fast convergence. The former two 

features are stemmed from using submodels identified 

around the operating points of the robot be controlled. The 

latter is resulted from using RBF that identify the submodel 

in use quickly.  These features make the proposed LMN 

promising scheme to mange with complex mobile robot 

navigation. 
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