Search results for: Weighting matrices.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 342

Search results for: Weighting matrices.

342 Sign Pattern Matrices that Admit P0 Matrices

Authors: Ling Zhang, Ting-Zhu Huang

Abstract:

A P0-matrix is a real square matrix all of whose principle minors are nonnegative. In this paper, we consider the class of P0-matrix. Our main aim is to determine which sign pattern matrices are admissible for this class of real matrices.

Keywords: Sign pattern matrices, P0 matrices, graph, digraph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168
341 The Effect of Response Feedback on Performance of Active Controlled Nonlinear Frames

Authors: M. Mohebbi, K. Shakeri

Abstract:

The effect of different combinations of response feedback on the performance of active control system on nonlinear frames has been studied in this paper. To this end different feedback combinations including displacement, velocity, acceleration and full response feedback have been utilized in controlling the response of an eight story bilinear hysteretic frame which has been subjected to a white noise excitation and controlled by eight actuators which could fully control the frame. For active control of nonlinear frame Newmark nonlinear instantaneous optimal control algorithm has been used which a diagonal matrix has been selected for weighting matrices in performance index. For optimal design of active control system while the objective has been to reduce the maximum drift to below the yielding level, Distributed Genetic Algorithm (DGA) has been used to determine the proper set of weighting matrices. The criteria to assess the effect of each combination of response feedback have been the minimum required control force to reduce the maximum drift to below the yielding drift. The results of numerical simulation show that the performance of active control system is dependent on the type of response feedback where the velocity feedback is more effective in designing optimal control system in comparison with displacement and acceleration feedback. Also using full feedback of response in controller design leads to minimum control force amongst other combinations. Also the distributed genetic algorithm shows acceptable convergence speed in solving the optimization problem of designing active control systems.

Keywords: Active control, Distributed genetic algorithms, Response feedback, Weighting matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
340 On the Construction of Lightweight Circulant Maximum Distance Separable Matrices

Authors: Qinyi Mei, Li-Ping Wang

Abstract:

MDS matrices are of great significance in the design of block ciphers and hash functions. In the present paper, we investigate the problem of constructing MDS matrices which are both lightweight and low-latency. We propose a new method of constructing lightweight MDS matrices using circulant matrices which can be implemented efficiently in hardware. Furthermore, we provide circulant MDS matrices with as few bit XOR operations as possible for the classical dimensions 4 × 4, 8 × 8 over the space of linear transformations over finite field F42 . In contrast to previous constructions of MDS matrices, our constructions have achieved fewer XORs.

Keywords: Linear diffusion layer, circulant matrix, lightweight, MDS matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
339 A Note on Toeplitz Matrices

Authors: Hsuan-Chu Li

Abstract:

In this note, we demonstrate explicit LU factorizations of Toeplitz matrices for some small sizes. Furthermore, we obtain the inverse of referred Toeplitz matrices by appling the above-mentioned results.

Keywords: Toeplitz matrices, LU factorization, inverse of amatrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1146
338 Feature Weighting and Selection - A Novel Genetic Evolutionary Approach

Authors: Serkawt Khola

Abstract:

A feature weighting and selection method is proposed which uses the structure of a weightless neuron and exploits the principles that govern the operation of Genetic Algorithms and Evolution. Features are coded onto chromosomes in a novel way which allows weighting information regarding the features to be directly inferred from the gene values. The proposed method is significant in that it addresses several problems concerned with algorithms for feature selection and weighting as well as providing significant advantages such as speed, simplicity and suitability for real-time systems.

Keywords: Feature weighting, genetic algorithm, pattern recognition, weightless neuron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
337 Ride Control of Passenger Cars with Semi-active Suspension System Using a Linear Quadratic Regulator and Hybrid Optimization Algorithm

Authors: Ali Fellah Jahromi, Wen Fang Xie, Rama B. Bhat

Abstract:

A semi-active control strategy for suspension systems of passenger cars is presented employing Magnetorheological (MR) dampers. The vehicle is modeled with seven DOFs including the, roll pitch and bounce of car body, and the vertical motion of the four tires. In order to design an optimal controller based on the actuator constraints, a Linear-Quadratic Regulator (LQR) is designed. The design procedure of the LQR consists of selecting two weighting matrices to minimize the energy of the control system. This paper presents a hybrid optimization procedure which is a combination of gradient-based and evolutionary algorithms to choose the weighting matrices with regards to the actuator constraint. The optimization algorithm is defined based on maximum comfort and actuator constraints. It is noted that utilizing the present control algorithm may significantly reduce the vibration response of the passenger car, thus, providing a comfortable ride.

Keywords: Full car model, Linear Quadratic Regulator, Sequential Quadratic Programming, Genetic Algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2904
336 1/Sigma Term Weighting Scheme for Sentiment Analysis

Authors: Hanan Alshaher, Jinsheng Xu

Abstract:

Large amounts of data on the web can provide valuable information. For example, product reviews help business owners measure customer satisfaction. Sentiment analysis classifies texts into two polarities: positive and negative. This paper examines movie reviews and tweets using a new term weighting scheme, called one-over-sigma (1/sigma), on benchmark datasets for sentiment classification. The proposed method aims to improve the performance of sentiment classification. The results show that 1/sigma is more accurate than the popular term weighting schemes. In order to verify if the entropy reflects the discriminating power of terms, we report a comparison of entropy values for different term weighting schemes.

Keywords: Sentiment analysis, term weighting scheme, 1/sigma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 461
335 Determination of Q and R Matrices for Optimal Pitch Aircraft Control

Authors: N. Popovich, P. Yan

Abstract:

In this paper, the process of obtaining Q and R matrices for optimal pitch aircraft control system has been described. Since the innovation of optimal control method, the determination of Q and R matrices for such system has not been fully specified. The value of Q and R for optimal pitch aircraft control application, have been simulated and calculated. The suitable results for Q and R have been observed through the performance index (PI). If the PI is small “enough", we would say the Q & R values are suitable for that certain type of optimal control system. Moreover, for the same value of PI, we could have different Q and R sets. Due to the rule-free determination of Q and R matrices, a specific method is brought to find out the rough value of Q and R referring to rather small value of PI.

Keywords: Aircraft, control, digital, optimal, Q and R matrices

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
334 Bisymmetric, Persymmetric Matrices and Its Applications in Eigen-decomposition of Adjacency and Laplacian Matrices

Authors: Mahdi Nouri

Abstract:

In this paper we introduce an efficient solution method for the Eigen-decomposition of bisymmetric and per symmetric matrices of symmetric structures. Here we decompose adjacency and Laplacian matrices of symmetric structures to submatrices with low dimension for fast and easy calculation of eigenvalues and eigenvectors. Examples are included to show the efficiency of the method.

Keywords: Graphs theory, Eigensolution, adjacency and Laplacian matrix, Canonical forms, bisymmetric, per symmetric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2388
333 Agents Network on a Grid: An Approach with the Set of Circulant Operators

Authors: Babiga Birregah, Prosper K. Doh, Kondo H. Adjallah

Abstract:

In this work we present some matrix operators named circulant operators and their action on square matrices. This study on square matrices provides new insights into the structure of the space of square matrices. Moreover it can be useful in various fields as in agents networking on Grid or large-scale distributed self-organizing grid systems.

Keywords: Pascal matrices, Binomial Recursion, Circulant Operators, Square Matrix Bipartition, Local Network, Parallel networks of agents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064
332 Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System

Authors: Ayad Al-Mahturi, Herman Wahid

Abstract:

This paper presents an optimal state feedback controller based on Linear Quadratic Regulator (LQR) for a two-rotor aero-dynamical system (TRAS). TRAS is a highly nonlinear multi-input multi-output (MIMO) system with two degrees of freedom and cross coupling. There are two parameters that define the behavior of LQR controller: state weighting matrix and control weighting matrix. The two parameters influence the performance of LQR. Particle Swarm Optimization (PSO) is proposed to optimally tune weighting matrices of LQR. The major concern of using LQR controller is to stabilize the TRAS by making the beam move quickly and accurately for tracking a trajectory or to reach a desired altitude. The simulation results were carried out in MATLAB/Simulink. The system is decoupled into two single-input single-output (SISO) systems. Comparing the performance of the optimized proportional, integral and derivative (PID) controller provided by INTECO, results depict that LQR controller gives a better performance in terms of both transient and steady state responses when PSO is performed.

Keywords: Linear quadratic regulator, LQR controller, optimal control, particle swarm optimization, PSO, two-rotor aero-dynamical system, TRAS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
331 Algebraic Riccati Matrix Equation for Eigen- Decomposition of Special Structured Matrices; Applications in Structural Mechanics

Authors: Mahdi Nouri

Abstract:

In this paper Algebraic Riccati matrix equation is used for Eigen-decomposition of special structured matrices. This is achieved by similarity transformation and then using algebraic riccati matrix equation to triangulation of matrices. The process is decomposition of matrices into small and specially structured submatrices with low dimensions for fast and easy finding of Eigenpairs. Numerical and structural examples included showing the efficiency of present method.

Keywords: Riccati, matrix equation, eigenvalue problem, symmetric, bisymmetric, persymmetric, decomposition, canonical forms, Graphs theory, adjacency and Laplacian matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
330 On Some Properties of Interval Matrices

Authors: K. Ganesan

Abstract:

By using a new set of arithmetic operations on interval numbers, we discuss some arithmetic properties of interval matrices which intern helps us to compute the powers of interval matrices and to solve the system of interval linear equations.

Keywords: Interval arithmetic, Interval matrix, linear equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
329 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting

Authors: Kemal Polat

Abstract:

In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.

Keywords: Fuzzy C-means clustering, Fuzzy C-means clustering based attribute weighting, Pima Indians diabetes dataset, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
328 Nullity of t-Tupple Graphs

Authors: Khidir R. Sharaf, Didar A. Ali

Abstract:

The nullity η(G) of a graph is the occurrence of zero as an eigenvalue in its spectra. A zero-sum weighting of a graph G is real valued function, say f from vertices of G to the set of real numbers, provided that for each vertex of G the summation of the weights f(w) over all neighborhood w of v is zero for each v in G.A high zero-sum weighting of G is one that uses maximum number of non-zero independent variables. If G is graph with an end vertex, and if H is an induced subgraph of G obtained by deleting this vertex together with the vertex adjacent to it, then, η(G)= η(H). In this paper, a high zero-sum weighting technique and the endvertex procedure are applied to evaluate the nullity of t-tupple and generalized t-tupple graphs are derived  and determined for some special types of graphs,

 Also, we introduce and prove some important results about the t-tupple coalescence, Cartesian and Kronecker products of nut graphs.

Keywords: Graph theory, Graph spectra, Nullity of graphs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
327 Reconstruction of Binary Matrices Satisfying Neighborhood Constraints by Simulated Annealing

Authors: Divyesh Patel, Tanuja Srivastava

Abstract:

This paper considers the NP-hard problem of reconstructing binary matrices satisfying exactly-1-4-adjacency constraint from its row and column projections. This problem is formulated into a maximization problem. The objective function gives a measure of adjacency constraint for the binary matrices. The maximization problem is solved by the simulated annealing algorithm and experimental results are presented.

Keywords: Discrete Tomography, exactly-1-4-adjacency, simulated annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
326 Iterative Solutions to Some Linear Matrix Equations

Authors: Jiashang Jiang, Hao Liu, Yongxin Yuan

Abstract:

In this paper the gradient based iterative algorithms are presented to solve the following four types linear matrix equations: (a) AXB = F; (b) AXB = F, CXD = G; (c) AXB = F s. t. X = XT ; (d) AXB+CYD = F, where X and Y are unknown matrices, A,B,C,D, F,G are the given constant matrices. It is proved that if the equation considered has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. The numerical results show that the proposed method is reliable and attractive.

Keywords: Matrix equation, iterative algorithm, parameter estimation, minimum norm solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
325 Retrospective Synthetic Focusing with Correlation Weighting for Very High Frame Rate Ultrasound

Authors: Chang-Lin Hu, Yao-You Cheng, Meng-Lin Li

Abstract:

The need of high frame-rate imaging has been triggered by the new applications of ultrasound imaging to transient elastography and real-time 3D ultrasound. Using plane wave excitation (PWE) is one of the methods to achieve very high frame-rate imaging since an image can be formed with a single insonification. However, due to the lack of transmit focusing, the image quality with PWE is lower compared with those using conventional focused transmission. To solve this problem, we propose a filter-retrieved transmit focusing (FRF) technique combined with cross-correlation weighting (FRF+CC weighting) for high frame-rate imaging with PWE. A restrospective focusing filter is designed to simultaneously minimize the predefined sidelobe energy associated with single PWE and the filter energy related to the signal-to-noise-ratio (SNR). This filter attempts to maintain the mainlobe signals and to reduce the sidelobe ones, which gives similar mainlobe signals and different sidelobes between the original PWE and the FRF baseband data. Normalized cross-correlation coefficient at zero lag is calculated to quantify the degree of similarity at each imaging point and used as a weighting matrix to the FRF baseband data to further suppress sidelobes, thus improving the filter-retrieved focusing quality.

Keywords: retrospective synthetic focusing, high frame rate, correlation weighting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
324 Minimization Problems for Generalized Reflexive and Generalized Anti-Reflexive Matrices

Authors: Yongxin Yuan

Abstract:

Let R ∈ Cm×m and S ∈ Cn×n be nontrivial unitary involutions, i.e., RH = R = R−1 = ±Im and SH = S = S−1 = ±In. A ∈ Cm×n is said to be a generalized reflexive (anti-reflexive) matrix if RAS = A (RAS = −A). Let ρ be the set of m × n generalized reflexive (anti-reflexive) matrices. Given X ∈ Cn×p, Z ∈ Cm×p, Y ∈ Cm×q and W ∈ Cn×q, we characterize the matrices A in ρ that minimize AX−Z2+Y HA−WH2, and, given an arbitrary A˜ ∈ Cm×n, we find a unique matrix among the minimizers of AX − Z2 + Y HA − WH2 in ρ that minimizes A − A˜. We also obtain sufficient and necessary conditions for existence of A ∈ ρ such that AX = Z, Y HA = WH, and characterize the set of all such matrices A if the conditions are satisfied. These results are applied to solve a class of left and right inverse eigenproblems for generalized reflexive (anti-reflexive) matrices.

Keywords: approximation, generalized reflexive matrix, generalized anti-reflexive matrix, inverse eigenvalue problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063
323 Some New Subclasses of Nonsingular H-matrices

Authors: Guangbin Wang, Liangliang Li, Fuping Tan

Abstract:

In this paper, we obtain some new subclasses of non¬singular H-matrices by using a diagonally dominant matrix

Keywords: H-matrix, diagonal dominance, a diagonally dominant matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 999
322 Performance Evaluation of Refinement Method for Wideband Two-Beams Formation

Authors: C. Bunsanit

Abstract:

This paper presents the refinement method for two beams formation of wideband smart antenna. The refinement method for weighting coefficients is based on Fully Spatial Signal Processing by taking Inverse Discrete Fourier Transform (IDFT), and its simulation results are presented using MATLAB. The radiation pattern is created by multiplying the incoming signal with real weights and then summing them together. These real weighting coefficients are computed by IDFT method; however, the range of weight values is relatively wide. Therefore, for reducing this range, the refinement method is used. The radiation pattern concerns with five input parameters to control. These parameters are maximum weighting coefficient, wideband signal, direction of mainbeam, beamwidth, and maximum of minor lobe level. Comparison of the obtained simulation results between using refinement method and taking only IDFT shows that the refinement method works well for wideband two beams formation.

Keywords: Fully spatial signal processing, beam forming, refinement method, smart antenna, weighting coefficient, wideband.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1033
321 Effect of Steel Fibers on Flexural Behavior of Normal and High Strength Concrete

Authors: K. M. Aldossari, W. A. Elsaigh, M. J. Shannag

Abstract:

An experimental study was conducted to investigate the effect of hooked-end steel fibers on the flexural behavior of normal and high strength concrete matrices. The fibers content appropriate for the concrete matrices investigated was also determined based on flexural tests on standard prisms. Parameters investigated include: matrix compressive strength ranging from 45 MPa to 70 MPa, corresponding to normal and high strength concrete matrices respectively; fibers volume fraction including 0, 0.5%, 0.76% and 1%, equivalent to 0, 40, 60, and 80 kg/m3 of hooked-end steel fibers respectively. Test results indicated that flexural strength and toughness of normal and high strength concrete matrices were significantly improved with the increase in the fibers content added; whereas a slight improvement in compressive strength was observed for the same matrices. Furthermore, the test results indicated that the effect of increasing the fibers content was more pronounced on increasing the flexural strength of high strength concrete than that of normal concrete.

Keywords: Concrete, flexural strength, toughness, steel fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
320 The Projection Methods for Computing the Pseudospectra of Large Scale Matrices

Authors: Zhengsheng Wang, Xiangyong Ji, Yong Du

Abstract:

The projection methods, usually viewed as the methods for computing eigenvalues, can also be used to estimate pseudospectra. This paper proposes a kind of projection methods for computing the pseudospectra of large scale matrices, including orthogonalization projection method and oblique projection method respectively. This possibility may be of practical importance in applications involving large scale highly nonnormal matrices. Numerical algorithms are given and some numerical experiments illustrate the efficiency of the new algorithms.

Keywords: Pseudospectra, eigenvalue, projection method, Arnoldi, IOM(q)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
319 The Inverse Eigenvalue Problem via Orthogonal Matrices

Authors: A. M. Nazari, B. Sepehrian, M. Jabari

Abstract:

In this paper we study the inverse eigenvalue problem for symmetric special matrices and introduce sufficient conditions for obtaining nonnegative matrices. We get the HROU algorithm from [1] and introduce some extension of this algorithm. If we have some eigenvectors and associated eigenvalues of a matrix, then by this extension we can find the symmetric matrix that its eigenvalue and eigenvectors are given. At last we study the special cases and get some remarkable results.

Keywords: Householder matrix, nonnegative matrix, Inverse eigenvalue problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
318 Vendor Selection and Supply Quotas Determination by using Revised Weighting Method and Multi-Objective Programming Methods

Authors: Tunjo Perić, Marin Fatović

Abstract:

In this paper a new methodology for vendor selection and supply quotas determination (VSSQD) is proposed. The problem of VSSQD is solved by the model that combines revised weighting method for determining the objective function coefficients, and a multiple objective linear programming (MOLP) method based on the cooperative game theory for VSSQD. The criteria used for VSSQD are: (1) purchase costs and (2) product quality supplied by individual vendors. The proposed methodology has been tested on the example of flour purchase for a bakery with two decision makers.

Keywords: Cooperative game theory, multiple objective linear programming, revised weighting method, vendor selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
317 Stability Criteria for Uncertainty Markovian Jumping Parameters of BAM Neural Networks with Leakage and Discrete Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

In this paper, the problem of stability criteria for Markovian jumping BAM neural networks with leakage and discrete delays has been investigated. Some new sufficient condition are derived based on a novel Lyapunov-Krasovskii functional approach. These new criteria based on delay partitioning idea are proved to be less conservative because free-weighting matrices method and a convex optimization approach are considered. Finally, one numerical example is given to illustrate the the usefulness and feasibility of the proposed main results.

Keywords: Stability, Markovian jumping neural networks, Timevarying delays, Linear matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5105
316 The Direct Updating of Damping and Gyroscopic Matrices using Incomplete Complex Test Data

Authors: Jiashang Jiang, Yongxin Yuan

Abstract:

In this paper we develop an efficient numerical method for the finite-element model updating of damped gyroscopic systems based on incomplete complex modal measured data. It is assumed that the analytical mass and stiffness matrices are correct and only the damping and gyroscopic matrices need to be updated. By solving a constrained optimization problem, the optimal corrected symmetric damping matrix and skew-symmetric gyroscopic matrix complied with the required eigenvalue equation are found under a weighted Frobenius norm sense.

Keywords: Model updating, damped gyroscopic system, partially prescribed spectral information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
315 Algorithm for Reconstructing 3D-Binary Matrix with Periodicity Constraints from Two Projections

Authors: V. Masilamani, Kamala Krithivasan

Abstract:

We study the problem of reconstructing a three dimensional binary matrices whose interiors are only accessible through few projections. Such question is prominently motivated by the demand in material science for developing tool for reconstruction of crystalline structures from their images obtained by high-resolution transmission electron microscopy. Various approaches have been suggested to reconstruct 3D-object (crystalline structure) by reconstructing slice of the 3D-object. To handle the ill-posedness of the problem, a priori information such as convexity, connectivity and periodicity are used to limit the number of possible solutions. Formally, 3Dobject (crystalline structure) having a priory information is modeled by a class of 3D-binary matrices satisfying a priori information. We consider 3D-binary matrices with periodicity constraints, and we propose a polynomial time algorithm to reconstruct 3D-binary matrices with periodicity constraints from two orthogonal projections.

Keywords: 3D-Binary Matrix Reconstruction, Computed Tomography, Discrete Tomography, Integral Max Flow Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4854
314 Inverse Dynamic Active Ground Motion Acceleration Inputs Estimation of the Retaining Structure

Authors: Ming-Hui Lee, Iau-Teh Wang

Abstract:

The innovative fuzzy estimator is used to estimate the ground motion acceleration of the retaining structure in this study. The Kalman filter without the input term and the fuzzy weighting recursive least square estimator are two main portions of this method. The innovation vector can be produced by the Kalman filter, and be applied to the fuzzy weighting recursive least square estimator to estimate the acceleration input over time. The excellent performance of this estimator is demonstrated by comparing it with the use of difference weighting function, the distinct levels of the measurement noise covariance and the initial process noise covariance. The availability and the precision of the proposed method proposed in this study can be verified by comparing the actual value and the one obtained by numerical simulation.

Keywords: Earthquake, Fuzzy Estimator, Kalman Filter, Recursive Least Square Estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
313 Some New Inequalities for Eigenvalues of the Hadamard Product and the Fan Product of Matrices

Authors: Jing Li, Guang Zhou

Abstract:

Let A and B be nonnegative matrices. A new upper bound on the spectral radius ρ(A◦B) is obtained. Meanwhile, a new lower bound on the smallest eigenvalue q(AB) for the Fan product, and a new lower bound on the minimum eigenvalue q(B ◦A−1) for the Hadamard product of B and A−1 of two nonsingular M-matrices A and B are given. Some results of comparison are also given in theory. To illustrate our results, numerical examples are considered.

Keywords: Hadamard product, Fan product; nonnegative matrix, M-matrix, Spectral radius, Minimum eigenvalue, 1-path cover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862