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Stability Criteria for Uncertainty Markovian
Jumping Parameters of BAM Neural Networks with
Leakage and Discrete Delays

Qingqging Wang, Baocheng Chen, Shouming Zhong

Abstract—In this paper, the problem of stability criteria for
Markovian jumping BAM neural networks with leakage and
discrete delays has been investigated. Some new sufficient condition
are derived based on a novel Lyapunov-Krasovskii functional
approach. These new criteria based on delay partitioning idea are
proved to be less conservative because free-weighting matrices
method and a convex optimization approach are considered. Finally,
one numerical example is given to illustrate the the usefulness and
feasibility of the proposed main results.

Keywords—Stability, Markovian jumping neural networks, Time-
varying delays, Linear matrix inequality.

I. INTRODUCTION

IDIRECTIONAL associative memory (BAM) neural

networks have been extensively studied in recent years
due to its wide application in various areas such as image
processing,pattern recognition, automatic control, associative
memory,optimization problems, and so on.BAM neural
network is composed of neurons arranged in two layers: the
x-layer and y-layer. The neurons in one layer are fully
interconnected to the neurons in the other layer. Now, many
sufficient conditions ensuring stability BAM neural networks
have been derived, see, for example, [1-19] and references
cited therein.

On the other hand, systems with Marvokian jumps have
been attracting increasing research attention. The Marvokian
jump systems have the advantage of modeling the dynamic
systems subject to abrupt variation in their structures, such
as operating in different points of a nonlinear plant [16].
Recently, there has been a growing interest in the study of
neural networks with Marvokian jumping parameters [20-28].
In [20], the problem of stochastic stability criteria for BAM
neural networks with Marvokian jumping parameters are
investigated based on partitioning idea. In addition, the
authors in [25] discussed the problem of BAM neural
networks with constant delays in the leakage term. Moreover,
Peng [26], investigated global attractive periodic solution of
BAM neural networks with continuously distributed delays
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in the leakage terms. To the best of our knowledge, the
stability analysis for Markovian jumping BAM neural
networks with leakage and discrete delays has never been
tackled, and such a situation motivates our present study.

In this paper, the stability analysis for Markovian jumping
BAM neural networks with leakage and discrete delays is
considered. Some new delay-dependent stability criteria for
Markovian jumping BAM neural networks with leakage and
discrete delays will be proposed by dividing the delay
interval into multiple segments, and constructing new
Lyapunov-Krasovskii functional. The obtained criterion are
less conservative because free-weighting matrices method
and a convex optimization approach are considered. Finally,
one numerical example is given to illustrate the the
usefulness and feasibility of the proposed main results.

II. PROBLEM STATEMENT

Consider the following BAM neural networks with leakage
and discrete delays:

{ dp(8) = — Azy (t—0) + O F (yg (£)) + E flyq (t— (1)) + 1,
q(t) =~ Byq(t —8)+Dg(x, (1)) + Fg(ay(t—(t))) +J,
(D

where @, (t) = [2p1(t), Zp2(t), . .., 2pn (t)]T € R™ and y,(t) =
[Yq1 (1), yg2(t), . - ., ygn(t)]T € R™ denote the state vectors;
3(p() =191 (21 (), G2(202(), - G (2pn ()] € R™ and
FWa() = 1 War (). Fo0g2())s- -, Falyan(DIT € R are
the neuron activation function;A = diag{a;} € R" and
B = diag{b;} € R™ are positive diagonal matrices;C and D
are the connection weight matrices,E and F are the delayed
connection weight matrices; I, = [I1, [p2, .. .,Ipn]T € R"
and J, = [Jg1,Jg2,. .., Jgn]T € R™ are the constant input
vector; o and 0 are the leakage delays satisfying ¢ > 0 and
0 > 0, respectively.

The following assumptions are adopted throughout the paper.
Assumption 1: The delay h(t) and ¢(¢) are time-varying
continuous functions and satisfies:

0 <¢(t) <,¢(t) <sp <1,0<h(t) < hh(t)<hp<1
()

where ¢, h,cp and hp are constants.
Assumption 2: Neuron activation function g;(-), fi(+) in (1)
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satisfies the following condition:

< PO =10 e Foy =0
o) — 5i8) ®
i\) — Gi

by < L= <1 5:(0) =0

forall o, € Ra# B,i=1,2,...,n

Based on this assumption, it can be easily proven that there
exists one equilibrium point for (1) by Brouwer*s fixed-point
theorem. Let x5 =[5, 250, ..., 25,7 vl = [Yi1, Yo, -
y;;n}T is the equilibrium point of (1) and using the
transformation z(-) = x,(-) — 75.y(-) = y4(-) — v, system
(1) can be converted to the following system :

i(t)=—Ax(t — o) + Cf(y(t)) + Ef(y(t — h(t))) @

§(t)=—By(t — ) + Dg(x(t)) + Fg(x(t — <(1)))
where z(t) =[z1(t), z2(t), ..., 2a ()]", y(t) =[y1 (1), y2(2),
---,yn( )iT7g(x())=[gi( ()) 0223+, gulwa (N7,
f( [fl Y1 )>Jf2( 7fn y’n()iT’ fz( z()) =
fz(yz( ) + ygi) — fi(yg), and gz(rz( ) = gilwi() + xp;) —
gi(zy)i=1,2,...,m.
From inequalities (3) and (4),one can obtain that:
< M < o =0

(5)

Iy, < 92(0‘) <13,:(0)=0,i=1,2,.

Given probabihty space (2,7, P), where € is sample
space, Y is o—algebra of subset of the sample space, and P
is the probability measure defined on Y. Let
{r(t),t € [0,+00)} be a right-continuous Markovian process
on the probability space which takes values in the finite
space S = {1,2,..., N} with generator II = (m;x;)Nxn
given by:

FijAf + O(At) ] 7é 7
(6)

with transition rates m;; > 0 for i,j € S,j # i and
T = — Z;V 1 ji TijsWhere At > 0 and lima;—0 (At) =0.
Due to the disturbance frequent occurs in many
applications,and combining with the discussion above, in this
paper, we consider delayed BAM neural networks with
uncertainty Markovian jumping parameters described by the
following nonlinear differential equations:

L(t)=—A(r(t),t)a(t — o) + C(r(t), 1) f(y(t))
+ E(r(t),1)f(y(t — h(r(t),1)))
y(t)=—=B(r(t),)y(t — 0) + D(r(t),t)g(z(t))
+ F(r(t), t)g(x(t — <(r(t),1)))
when r(t) = ¢ € S,and
A(r(t),t), B(r(t),t), C(r(t),t),
R(r(t),t),s(r(t),t) are denoted as A;(t), B;(t), C;(t), D;(t),
E;(t), Fi(t), hi(t),ci(t)respectively, and h;(t),;(t) denote
the time-varying delays which satisfy h;(¢) < hp; < 1,0 <
hit) < hi0 < G(t) < ) < spi < Lh =

P%@+Aﬂ—ﬂdﬂ—ﬁ—{

)

the matrix functions
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D(r(t),t), E(r(t),t), F(r(t),t),

max;ecs{h;}.¢ = max;jes{s;}.

Assumption 3: A;(t) = A; + AA,(t), Bi(t) = B; + AB;(t),
E; + AE;(t),F;(t) = F; + AF;(t),where the matrices
AAi(t), AB; (t)7 AC; (t), AD; (t), AFE; (t), AF; (t) are the
uncertainties of the system and have the form

[AA;(t), AB;(t), AC;(t), AD;(t), AE;(t), AF;(t)]

= GiFi(t)[Eai, Evi, Eci, Eai, Eei, Ei

where G, Eqi, Epi, Eci, Egi, Eei, E'y; are known constant real
matrices with appropriate dimensions and F;(t) is an unknown
matrix function with Lebesgue-measurable elements bounded
by

Fr(t)Fi(t) <1, Vi€ S. ©)

Let (z(t, ¢), y(t, ¢)) be the state trajectory the system (9) from
the initial data ¢ € C%, ([-<,0; "), ¢ € C%, ([~h,0];
R™).It can be seen that system (9) admits a trivial solution
(x(¢,0),y(t,0)) = 0 corresponding to the initial data ¢ =
0,p=0.

Definition 1 For the BAM neural network (9) and every initial
condition ¢ € C%, ([—<,0); R™), ¢ € CY, ([—h,0); R™),7(0) =
10,the trivial solution is said to be stochastically stable if the
following condition is satisfied:

t
lim E{/ (|z(s, ¢, i0) > + |y(s, @, i0)|2)ds} <oo  (10)
0

®)

t—00

Lemma 1 [7].For any positive semi-definite matrices
X1 X2 Xas

X = * Xoo  Xog > 0,the following integral
* * X33

inequality holds:

t
— / 7 (s) Xi(s)ds
t—q(t)

" 2(t) 17X X2 Xus z(t)
g/ x(t—s(t)) *  Xog Xos| [w(t—c(t))|ds
=] i(s) x % 0 (s)

Lemma 2 [3].Let Z, H and S be real matrices of appropriate
dimensions with H satisfying HT H < I,then for any scalar
€ > 0,the following inequality holds:

ZHS +(ZHS)' <e'Z22" + 575 (12)

III. MAIN RESULTS

In this section,we consider the case of AA;(t) =
system (9),a new Lyapunov functional is constructed to
derive the condition under which the system (9) are
stochastically stable in the mean square.For representation
convenience,the following notations are introduced:

L, = dia {liLi J’_ll_l’ Iy +l1_2’” i —i_lln}
2 2
L, = dmg{ s sl )
ngdmg{m;lzl’liglﬁ,” ann}
Ly = diag{lg—llQ_l’ 53252_2: cee l;nlm}
392 1SNI:0000000091950263
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Theorem 1 For any given scalars h; > 0,¢; > 0,hp;i,Spi
and integers [ > 1,k > 1,the system (9)with leakage and
discrete delays is globally asymptotically stable if there exist
symmetric positive definite matrices Py;, Pa;, Qji, M;, (j =
1,2,3,4),85,(j = 1,2,...,6),R;,(j = 1,2,...,8),positive

diagonal matrices W;;,(j = 1,2,...,6) ,and any matrices
X1 Xop X Yi Yo Y
Xi = | * Xy Xs| Vi = | *x Yy Y5, U =
* * Xei * x  Ygi

Ui U Us; Vie Vai Vs

x Uy Us|,Vi=| % Vi Vs| with appropriate

* x  Usg; * x Vi

imensions,for any ¢+ = 1,2,..., N,such that the following
LMIs holds:

N
> miQuy < My, k=1,2,3,4 (13)
j=1

N
> miiSk < Rk, k=1,2,...,6 (14)
j=1

(X1 Xai Xsi

L * * R7

(Y1 Y Y

x Yy Y| >0 (16)
| * xRy

(U Ui Us

* U4,L' U5i 20 (17)
L * * Rs

Vi Vo Vs

x Vi Vsl 20 (18)
| * * Rs

=+=2 XRTR; hSTRg

+ Ry 0 | <0 (19)

| = * —hRg
where
R=[0 —A Opon Ci 0 E|]

&

= [0n><4n Dz 0 FZ 0 _Bz 0n><5n]

= [Emn), (myn=1,2,...

(11

= ,14)

= [Ean

- T3iSi \ £ - 7
En=Qu—(1- T)E1Q1iE?+I1T(7TiiPu+ Q3+ S1i

+ So; + 0 M3 + S(Ry + Ro)— LoWig + 6; X1,
+2X3) 1 + %M1

T4iSi

Eio=—I{ PiiAi, E13=—(1 ;

VE1QuIT
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= = =T ST T
Eu=ghXe — I X3 + I} Xg;
- =T = =T
Eis=1; LoWi4, E1,12=11 P1;C;
= —ITP, B So00—=—0a:
=1,14 — 41 1L, =22 — Q31,

Ti3Si

Egz=—(1— VLQUIT — (1 — miii)S1 — LaWig

+ G Yy — 2Y5;
= T T = 7
Hau=q Yy — Y5 + Y5, E36=LaWis

SEga=—(1—p;)Sai + mii5;S2i — LoaWis + i (Xu; + Y1)
+ 2V — 2X;;

Eyr =Ly Wis, E55=_S5; + CRs — Wiy

Ess = DI Pyls, Zg6=—W;

Err=—(1 = Spi)Ssi + Tii5i S5 — Wis, Ers = F} Pa; I
- il | = T | 7T
Zgs =02 — (1 — VE2Qoi By +15 (13 Pai+ Qi+ Ssi
+ Sy + OMy + h(R3 + Ry)— LiWiy

~ h
+ hiUvi +2U3;) I + EMQ

i

Ego=—1I1 Ps; B;, Zg 10=—(1 — VE2Qoi I}

= T T = T =
Eg11 =15 (Uzi — Us; + Us;), Eg,12 =15 LiWi1, Zg9 = —Qu;

_ miih - . -
E00=—(1— %)MQQJE — S3; + miihiSs; — LiWis
+ hYy — 2Vs;

E1001=hiVay — Vii + Vs, 1013 =L1Wi3

ZE11.01=—(1 — hpi)Ssi + miihiSa; — LiWig + hUy; — 2Us;

Ei,14=L1Wia, Z12,12="956; + hRg — Wiy

Ei1313=—Wis, Era1a=—(1 — hpi)Sei + miihiSei — Wi

= - . TijSj = -
En =17 E mij Pyl + E Z; LB QuET
J#i J#i

TijSj - =
13 = Z ; LB Quil;

(11

J#i

2 N TS T T

E33 = Z ; I3Qqv13 + Zm‘jCan‘
J#i J#i
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== G B — oG ¢
B ;””952“ = ;WWS& Va(we, e, r(8) = | 2T (s)Qs(r(t))z(s)ds
1 3 t—o

| @it

+

- e mighy o o o

Ess =13 Zm‘jpzjb + Z ;{ L EsQaiE

J#i JFi .

V(e e, r(8) = / 7 ()8, (r())x(s)ds
t—(r(t))

= mijhj = .
Eg,10 = Z ;{ L EaQoi ]

L t
i + / 2T (5)Sy(r(t))x(s)ds
t—s(r(t),t)
S000 = 3 mishyS LELEN NoW 1) t
E10,10 = Z%‘ 393 +Z - 14Q2il4 +/ y" (s)S5(r(t))y(s)ds
J#i J#i t—h(r(t))
t
= = + T(5)S4(r(t))y(s)ds
=11,11 = Zﬂijhjszm =14,14 = Zm‘jhjsei /th(r(t),t) v o) alrie)u(e)
J#i J#i
. . P = t
All the other items in matrix = and = are 0. Va(@e, i, 7(t)) = / » )gT(x(s))SS(r(t))g(x(s))ds
t—c(r(t)t

jl = [In Onx(l—l)n] ; j? = [In Onx(k—l)n} t
4 / F7(y(5))So(r () £ (y(5))ds

i3 = [Onx(l—l)n In] 7I~4 = [Onx(k—l)n [n] t=h(r().t)
~ 0yt
15 = [Inx(l+6)n On><(k’+6)n} ‘/G(xtvytvr(t)) :/ ~ / ’Y]T(S)M171(S>d8d9
-5 Jitvo
. 0t
Ig = [Onx(l+6)n Inx(k+6)n} +/ ) / ’YQT(S)MQ’}/Q(S)CZSCZG
—h Jt+
[0 0 ... 0 0] oot
) L, 0 ... 0 0 +/_U /ng (s)Msx(s)dsdf
=10 I, 0 0 0t
+/ / yT (s)Myy(s)dsdd
o 0 ... L, 0], . SOt
0 pt
[0 0 ... 0 0] Vi(xe, ye,r(t)) = ~/ z7(s)(Ry + Ry)x(s)dsdf
) L, 0 ... 0 0 e
Es=|0 I, ... 0 0 +/~/ yT (5)(Rs 4+ Ry)y(s)dsdd
—hJtro
o o ... I, O Kk 0yt .
- - + [ [ gt Regla(s)dsds
Proof: Construct the following Lyapunov-Krasovskii —OS’ ttf)
function [ P Raf(y(s))dsas
8 —h Jt+0
V(Itvytvr(t)) = Z Vi(xmytﬂ’(t))
m=1 0 t
o T .
with Va(xe,ye, () = B t+0x (s)Rri(s)dsdf
0 st
Vi, g, () = 27 (8P (r()2(2) + 57 () Pa(r(£)y (2) + / ) / J7 (5) Rs(s)dsdo
—h Jt+0
t . . . .
- T Then, taking the derivative of V' (zy, v, 7(t)) with respect to t
Va(ze, ye,7(t)) = /t_7 71 (8)Q1(r(t))r1(s)ds along the system (7) yields
AT Oas)d .
* - T2 \8)%2ATIE)T218)48 LV (4,6, 0) = 227 (1) Prad(t) + 27 (t) Zﬂz‘jpu x(t)
=1
where 7N
71 (s) = {ajT(s) al(s—) ... aT(s— (l_l&)} ) +2y" (8) Pagy(t) + y" (1) Zﬁijpzj y(t)
“1)h, J=1
B = [y (s) ys -t o yT(s— )] 0)
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t N
+/ y'(s) (Z 7r¢j5'4j) y(s)ds (23)
t—h;(t) =1

S

LVy (g, ye,i) = 11 (£)Quara () — ri (t — i)Qurl(t — Tl)
+ Z Tl (= )Qun(t = )
h; h;
+ 75 (£)Qaira(t) — 3 (t — ?)Q%W(t - ?)
N
+ ; m;ﬂhj ry (t— %)QZiTQ(t - %)
t N
+/ N V1 (s) (Zﬂ—ilej) v1(s)ds
t—5i =
t N
+/ ., 3 (5) (Zﬂ'ijQQj) v2(s)ds
- =
21

LV (e, yp,1) = 27 ()Qsix(t) — 2 (t — 0)Qsiz(t — o)

L)

y" (1) Quiy(t) — y" (t — 6)Quiy(t — 0)

t N
n /t_(syT(s) (j_lmj@j) y(s)ds

(22)

LVi(xe,y1,1) <aT (6)Sra(t) —a (t—¢;) Sz (t—s)

)<z (
+( 77@1“) el (t—g;)Snix(t—<)

+ N
/ ZW”SU
t—¢; j=1

LVs(xs,ye,1) <

L‘/G(xtaytai)

LV7(zta Yt Z)

(t)S2ia(t) —(1—spi)a” (t—sft)) Sz (t—sft))

N
Z mijsi (1) | a7 (t=ci(8)) Saiw(t—ci(1))

(t)ngy t)— t hi)Ssiy(t—h;)
N
+ (ZTFU ]> 537 )
o )
t)5'47y(t i

(1—
(Zﬂuh (t ) )S42y t— h ( ))

z7(s) Z Tij ng) (s)ds

t si(t)

International Scholarly and Scientific Research & Innovation 8(2) 2014

T(t—=hi(t))Sasy(t—hyt)) LVs(@e,ye,7) <

9" (@(1))Ssig((®)+F (y(1) Seif (y(1))
-( <Dz)g( (t Cz( ))Ssig(2(t—<i(t)))
(1= ()))Sei f (y(t=hi(t)))

fjug@) (=) Srig (1)
+<§w (t) ) S (1)
(Z%s@) g(x(s))ds
+lt (Z)w%af@@>

Jj=1

24)

= SAT DM (1) + "o () Maa(t)
+ oaT () Maz(t) + dy™ () Myy(t)
- [ AT = [ F 6 Ma(os
- / 27 (s) M3z (s)ds — / yT (s)Myy(s)ds
t—o t—ao
(25)

= G (t)(R1 + Ro)x(t) + hy™ ()(Rs + Ra)y(t)
+ 397 (2(1)) Rsg(e(t) + RS T (y (1)) Ro f (y(t))

f/t;xT(s)(RlJrRz)x(s)ds
- / () (Rat Ray(s)ds
- / o7 (2(5)) Rag(x(s))ds

/ F7(y(s)) R f (y(s))ds
(26)

i () Reie(t) + hy" (1) Ry (t)

6

/th () Ryi(s)ds

Using Lemma 1 and (15)-(18),one can obtain the following

395
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inequalities
t

—/ 7 (s) Ry (s)ds
t—q;

t C[}(t) TXli Xgi Xgi l‘(t)

S/ x(t—gi(t)) * X4i X5i x(t—ci(t)) ds
t—gi(t) z(s) * * 0 z(s)
am[Et—a®)] Vi Yo Yai] e(t—ci(?))

+/ z(t—¢) Yy Y| | z(t—g) | ds
t=si z(s) x % 0 z(s)

(28)
t

S NACLEE
t—h;

b y(t) 1" [Uu Uz Usi] [ w()

g/ -] |+ U Usi| lyt—ni(e)| ds
t=hi®] g(s) * o« 0 y(s)
t—ha(t) [y(E—hi(2)) r Vie Vai Vai| [y(t—hi(t))

+/ y(t — hi) * Vi V|| y(t —hy) | ds
t=hs y(s) * o« 0 y(s)

(29)

For positive diagonal matrices W;;,7 = 1,2,...,6,we can get

from (5) that

bﬁ%TTiM1h%ﬂ[

>0

y(t) } (30)

fy(t))

According to (19) and Schur complement,we can get
¥ < 0Jet Ay = min )\mzn{_zz}»l € S ,s0 A1 > 0.Then, by
Dynkin’s formula, we have

E{V($t7yt:i)} - E{V(¢7 (2 7/0)}
s—ME{Auu@F+W@FM%

and,hence

Bl [ (2P + 1w P)ds Y < 2B V(6. 0.i0)}
{/0 } At

Based on Definition 1, the system (7) are stochastically stable
and the proof is completed. [ |

Remark 1 Theorem 1 proposes an improved stochastically
stability criterion for Markovian jumping BAM neural
networks with leakage and discrete delays. The main idea is
to divide the delay interval into multiple segments ,and the
thinner the delay is partitioned, the more obviously the
conservatism can be reduced.

Based on Theorem 1,we have the following result for
uncertainty Markovian jumping parameters of BAM neural
networks with leakage and discrete delays.

Theorem 2 For any given scalars h; > 0,¢; > 0,hp;i,Sp;
and integers [ > 1,k > 1,the system (7)with leakage and
discrete delays is globally asymptotically stable if there exist
two scalars €1 > 0,69 > 0,symmetric positive definite
matrices Pli,PQi,jS7Z\/[j7(j = 1,2,3,4),Sji,(j =

[ y(t—hi(t)) r —LiWio LiWia|[ y(t—hi(t)) -0 1,2,...,6),R;,(j = 1,2,...,8),positive diagonal matrices
S (y(t—hi(t))) * W ||f (y(t—hi(t)))] = Wij, (4 = 1,2,...,6) ,and any  matrices
(31) X1 Xop Xz Y, Yo Y3y
Xi = * X4i X5i ,}/i = * Y4i YS’L an =
r Tr_ 7 * *  Xg * * Y
y(tfhz) :| l:LlWiS L1Wi3:| |: y(tfhl) :| >0 61 61
Lf(y(t— h)) * ~Wis | [fly(t—hy))| = Ui Uz Usi Vie Vo V| .
(32) x Uy Usi|, Vi = | % Vi Vs | with appropriate
* * Us; * * Vi
- Tr 7 1 . imensions,for any ¢ = 1,2,..., N,such that the following
:E(t) :| [—L2W14 L2WL4:| { I(t) } >0 (33) LMIs holds:
L9(x(t)) * —Wia | [9(z(t)) v
) _ i Opi < My, k=1,2,3,4
2(t—ai(t) }T[_LQWIB L2W55M 2(t—i(t) }>0 ;QO < My 3 (36)
9(x(t—c(1))) * —Wis|lg(z(t— (1)) —
34) N
_ m;iSki < R, k=1,2,...,6 (37)
[ z(t — <) }T |:_L2Wi LQWi6:| [ z(t — ) } >0 ]; o
9(z(t — <)) * ~Wie | [9(z(t —<))]
(35) (X1 Xo Xg
From (13)-(14) and (20)-(35),one can obtain LV (x4, y, 1) < x Xy X5 >0 (38)
ET (1) D). | * * Ry
where
Y = B2+ 2+ NRTRAN + hST RS (Y1, Yo Y
& =[efe gw) O o
7
f?(t) = h/f(t)v 'Z.T(t - U)a xT(t - gi)v 'Z'T(t - (i(t))7gT($(t)), -
¢ (a(t - ), g7 ((t — (D)) U Us Ua
gg(t) = [’Yg(t)7 yT(t - 5)7 yT(t - hz)7 xT(t - hz(t))a fT(y(t))a * U4i U5i Z 0 (40)
PPt = ha), £7 (= ha()] xS
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[(Vii Vo Vs
x Vi Vsi| 20 (41)
* *  Rg
[E+Z RTR; hSTRg Noo e, RT} San  vE,01]
x  —CR7 0 %R7Gi 0 0 0
% x« —hRy 0 0 $RsG; 0
* * * —e11 0 0 0 [<0
* * * * -1 0 0
* * * * * —EQI 0
| * * * * * * —I |
(42)
where

Ni1=[0 —FEai Onxon Eei 0 Ee
Ny =[Ry; 0 0

SR T
Nog = [GTPili Onxisn

Ny = [N,

1GTR; 0]"

S11=[Onxan Fai 0 Ep 0 —Ep Opxsnl

S1=[Su 0 0

Cy T T T
S22 = [Onxzn  GIPoils Opxen)
Sy =[5, 0 LGTRg"

Proof: Replacing A;, B;,C;,D;, E;, F; in (19) with
A; + GiFi(t)Eai,Bi + GiFi(t)Ebi,Oi + GiFl‘(t)Eci,Di +
GiF;(t)Eq, F; + G;F;(t)Ey;.respectively,(19) is equivalent
to the following condition:

E+= XRTR; hSTRg
* —CRy 0 + RTET(HORT + Ry Fy (1)
* * —hRg

(43)

According to Lemma 2,(43) is true if there exist two scalars
€1, €2 > 0 such that the following inequality holds:

Z+2 NTR; hSTRsg
* —CRy 0 + e IRRT o RNy "
* * —hRg (44)

+ 52’1%235 + 52%’{81 <0

Using the Schur complement shows that (44) is equivalent to
(42).This completes the proof. [ ]

Remark 2 In this paper,Theorem 1 and Theorem 2 require
the upper bound of the derivative of time-varying hp;,<Sp;
known.However,in practice,hp;, <p; are unknown.Considering
this situation,we can set Sj; = 0,5 = 1,2,...,6 in Theorem
1 and Theorem 2.
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TABLE 1
MAXIMUM VALUE OF ¢ WITH DIFFERENT [, k,UNKNOWN ¢p, BY
THEOREM 1 IN EXAMPLE 1

Method hp =0.1 hp =0.3 hp =0.5
l=1k=1 0.692 0.541 0.437
l=1,k=2 1.573 1.268 1.025
l=2,k=3 1.917 1.901 1.873
l=3,k=4 2.589 2.448 2.098

TABLE 11

MAXIMUM VALUE OF h WITH DIFFERENT l, k,UNKNOWN hp, BY
THEOREM 1 IN EXAMPLE 1

Method sp =0.1 sp =03 sp =05
I=1,k= 0.753 0.675 0.542
l=1,k=2 1.178 1.025 0.978
1=2k=3 1.769 1.561 1.252
1=3,k=4 2.364 2.237 2.034

IV. EXAMPLE

In this section,we provide one numerical example to
demonstrate the effectiveness and less conservatism of our
delay-dependent stability criteria.

Example 1 Consider delayed BAM neural networks with
uncertainty Markovian jumping parameters as follows:

2(t)=—Auw(t — o) + Cif(y(1)) + Eif (y(t — hi(t)))
y(t)=—Biy(t — ) + Dig(x(t)) + Fig(x(t — (1))

where

(1.8 0 23 0 25 0
Al__o 2.2}’/12_[0 1.6}’31_[0 2.2}’
19 0 -1 0 04 -03
B2=1 3.1} OL= [—1 —1} G2 = [—0.8 0.1 } ’
0.1 0 0.6 0.8 0.9 0.1
Dr=1y —0.1]’D2_{ 0 0.1}’E1_[o.1 0.5}’
[03 06 0.3 0.1 —-0.4 0.1
E2=1 05 —0.9} 1= [0.1 0.4} F2 = {0.1 —0.7}
=77
"“le -6

In this example,we assume condition ¢ = § = 0.1.In Table
I,we consider the case of h; = hy = 0.1,the upper bound of
¢ with different [, k,unknown ¢p.In Table II,we consi(jer the
other case of ¢ = ¢y = 0.3,the upper bound of h with
different [, k,unknown hp.According to this two Tables,we
can see this example shows that the stability condition gives
much less conservative results in this paper.

V. CONCLUSION

In this present paper,we have investigated the problem of
stability for uncertainty Markovian jumping parameters of
BAM neural networks with leakage and discrete delays.Two
sufficient conditions have been presented.The obtained
criteria are less conservative because free-weighting matrices
method and a convex optimization approach are
considered.Finally,one example has been given to illustrate
the effectiveness of the proposed method.
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