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Abstract—In this paper, the problem of stability criteria for
Markovian jumping BAM neural networks with leakage and
discrete delays has been investigated. Some new sufficient condition
are derived based on a novel Lyapunov-Krasovskii functional
approach. These new criteria based on delay partitioning idea are
proved to be less conservative because free-weighting matrices
method and a convex optimization approach are considered. Finally,
one numerical example is given to illustrate the the usefulness and
feasibility of the proposed main results.
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I. INTRODUCTION

B IDIRECTIONAL associative memory (BAM) neural

networks have been extensively studied in recent years

due to its wide application in various areas such as image

processing,pattern recognition, automatic control, associative

memory,optimization problems, and so on.BAM neural

network is composed of neurons arranged in two layers: the

x-layer and y-layer. The neurons in one layer are fully

interconnected to the neurons in the other layer. Now, many

sufficient conditions ensuring stability BAM neural networks

have been derived, see, for example, [1-19] and references

cited therein.

On the other hand, systems with Marvokian jumps have

been attracting increasing research attention. The Marvokian

jump systems have the advantage of modeling the dynamic

systems subject to abrupt variation in their structures, such

as operating in different points of a nonlinear plant [16].

Recently, there has been a growing interest in the study of

neural networks with Marvokian jumping parameters [20-28].

In [20], the problem of stochastic stability criteria for BAM

neural networks with Marvokian jumping parameters are

investigated based on partitioning idea. In addition, the

authors in [25] discussed the problem of BAM neural

networks with constant delays in the leakage term. Moreover,

Peng [26], investigated global attractive periodic solution of

BAM neural networks with continuously distributed delays
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in the leakage terms. To the best of our knowledge, the

stability analysis for Markovian jumping BAM neural

networks with leakage and discrete delays has never been

tackled, and such a situation motivates our present study.

In this paper, the stability analysis for Markovian jumping

BAM neural networks with leakage and discrete delays is

considered. Some new delay-dependent stability criteria for

Markovian jumping BAM neural networks with leakage and

discrete delays will be proposed by dividing the delay

interval into multiple segments, and constructing new

Lyapunov-Krasovskii functional. The obtained criterion are

less conservative because free-weighting matrices method

and a convex optimization approach are considered. Finally,

one numerical example is given to illustrate the the

usefulness and feasibility of the proposed main results.

II. PROBLEM STATEMENT

Consider the following BAM neural networks with leakage

and discrete delays:{
ẋp(t)=−Axp(t−σ)+Cf̃(yq(t))+Ef̃(yq(t−h(t)))+Ip

ẏq(t)=−Byq(t−δ)+Dg̃(xp(t))+F g̃(xp(t−ς(t)))+Jq
(1)

where xp(t) = [xp1(t), xp2(t), . . . , xpn(t)]
T ∈Rn and yq(t) =

[yq1(t), yq2(t), . . . , yqn(t)]
T ∈ Rn denote the state vectors;

g̃(xp(·))= [g̃1(xp1(·)), g̃2(xp2(·)), . . . , g̃n(xpn(·))]T ∈Rn and

f̃(yq(·)) = [f̃1(yq1(·)), f̃2(yq2(·)), . . . , f̃n(yqn(·))]T ∈ Rn are

the neuron activation function;A = diag{ai} ∈ Rn and

B = diag{bi} ∈ Rn are positive diagonal matrices;C and D

are the connection weight matrices,E and F are the delayed

connection weight matrices; Ip = [Ip1, Ip2, . . . , Ipn]
T ∈ Rn

and Jq = [Jq1, Jq2, . . . , Jqn]
T ∈ Rn are the constant input

vector; σ and δ are the leakage delays satisfying σ ≥ 0 and

δ ≥ 0, respectively.

The following assumptions are adopted throughout the paper.

Assumption 1: The delay h(t) and ς(t) are time-varying

continuous functions and satisfies:

0 ≤ ς(t) ≤ ς, ς̇(t) ≤ ςD < 1, 0 ≤ h(t) ≤ h, ḣ(t) ≤ hD < 1
(2)

where ς, h,ςD and hD are constants.

Assumption 2: Neuron activation function gi(·), fi(·) in (1)

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:8, No:2, 2014 

391International Scholarly and Scientific Research & Innovation 8(2) 2014 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:8
, N

o:
2,

 2
01

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
99

77
02

.p
df



satisfies the following condition:

l−1i ≤
f̃i(α)− f̃i(β)

α− β
≤ l+1i, f̃i(0) = 0

l−2i ≤
g̃i(α)− g̃i(β)

α− β
≤ l+2i, g̃i(0) = 0

(3)

for all α, β ∈ R,α �= β,i = 1, 2, . . . , n.

Based on this assumption, it can be easily proven that there

exists one equilibrium point for (1) by Brouwer‘s fixed-point

theorem. Let x∗
p = [x∗

p1, x
∗
p2, . . . , x

∗
pn]

T , y∗q = [y∗q1, y
∗
q2, . . . ,

y∗qn]
T is the equilibrium point of (1) and using the

transformation x(·) = xp(·) − x∗
p,y(·) = yq(·) − y∗q , system

(1) can be converted to the following system :{
ẋ(t)=−Ax(t− σ) + Cf(y(t)) + Ef(y(t− h(t)))

ẏ(t)=−By(t− δ) +Dg(x(t)) + Fg(x(t− ς(t)))
(4)

where x(t)=[x1(t), x2(t), . . . , xn(t)]
T , y(t)=[y1(t), y2(t),

. . . , yn(t)]
T , g(x(·))=[g1(x1(·)), g2(x2(·)), . . . , gn(xn(·))]T ,

f(y(·)) = [f1(y1(·)), f2(y2(·)), . . . , fn(yn(·))]T , fi(yi(·)) =
f̃i(yi(·) + y∗qi) − f̃i(y

∗
qi),and gi(xi(·)) = g̃i(xi(·) + x∗

pi) −
g̃i(x

∗
pi),i = 1, 2, . . . , n.

From inequalities (3) and (4),one can obtain that:

l−1i ≤
fi(α)

α
≤ l+1i, fi(0) = 0,

l−2i ≤
gi(α)

α
≤ l+2i, gi(0) = 0, i = 1, 2, . . . , n.

(5)

Given probability space (Ω,Υ, P ), where Ω is sample

space,Υ is σ−algebra of subset of the sample space, and P

is the probability measure defined on Υ. Let

{r(t), t ∈ [0,+∞)} be a right-continuous Markovian process

on the probability space which takes values in the finite

space S = {1, 2, . . . , N} with generator Π = (πi×j)N×N

given by:

P{r(t+Δt) = j|r(t) = i} =

{
πijΔt+ o(Δt) j �= i

1 + πiiΔt+ o(Δt) j = i

(6)

with transition rates πij ≥ 0 for i, j ∈ S, j �= i and

πii = −∑N
j=1,j �=i πij ,where Δt > 0 and limΔt→0

o(Δt)
Δt = 0.

Due to the disturbance frequent occurs in many

applications,and combining with the discussion above, in this

paper, we consider delayed BAM neural networks with

uncertainty Markovian jumping parameters described by the

following nonlinear differential equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t)=−A(r(t), t)x(t− σ) + C(r(t), t)f(y(t))

+ E(r(t), t)f(y(t− h(r(t), t)))

ẏ(t)=−B(r(t), t)y(t− δ) +D(r(t), t)g(x(t))

+ F (r(t), t)g(x(t− ς(r(t), t)))

(7)

when r(t) = i ∈ S,and the matrix functions

A(r(t),t), B(r(t),t), C(r(t),t), D(r(t),t), E(r(t),t), F (r(t),t),
h(r(t), t), ς(r(t), t) are denoted as Ai(t), Bi(t), Ci(t), Di(t),
Ei(t), Fi(t), hi(t), ςi(t),respectively, and hi(t), ςi(t) denote

the time-varying delays which satisfy ḣi(t) ≤ hDi < 1, 0 ≤
hi(t) ≤ hi, 0 ≤ ςi(t) ≤ ςi,ς̇i(t) ≤ ςDi < 1,h̃ =

maxj∈S{hj},ς̃ = maxj∈S{ςj}.

Assumption 3: Ai(t) = Ai +ΔAi(t), Bi(t) = Bi +ΔBi(t),
Ci(t) = Ci + ΔCi(t), Di(t) = Di + ΔDi(t), Ei(t) =
Ei + ΔEi(t), Fi(t) = Fi + ΔFi(t),where the matrices

ΔAi(t),ΔBi(t),ΔCi(t),ΔDi(t),ΔEi(t),ΔFi(t) are the

uncertainties of the system and have the form

[ΔAi(t),ΔBi(t),ΔCi(t),ΔDi(t),ΔEi(t),ΔFi(t)]

= GiFi(t)[Eai, Ebi, Eci, Edi, Eei, Efi]
(8)

where Gi, Eai, Ebi, Eci, Edi, Eei, Efi are known constant real

matrices with appropriate dimensions and Fi(t) is an unknown

matrix function with Lebesgue-measurable elements bounded

by

FT
i (t)Fi(t) ≤ I, ∀i ∈ S. (9)

Let (x(t, φ), y(t, ϕ)) be the state trajectory the system (9) from

the initial data φ ∈ Cb
F0
([−ς̃ , 0];Rn), ϕ ∈ Cb

F0
([−h̃, 0];

Rn).It can be seen that system (9) admits a trivial solution

(x(t, 0), y(t, 0)) ≡ 0 corresponding to the initial data φ =
0, ϕ = 0.

Definition 1 For the BAM neural network (9) and every initial

condition φ∈Cb
F0
([−ς̃ , 0];Rn), ϕ∈Cb

F0
([−h̃, 0];Rn), r(0) =

i0,the trivial solution is said to be stochastically stable if the

following condition is satisfied:

lim
t→∞E

{∫ t

0

(|x(s, φ, i0)|2 + |y(s, ϕ, i0)|2)ds
}

< ∞ (10)

Lemma 1 [7]. For any positive semi-definite matrices

X =

⎡
⎣X11 X12 X13

∗ X22 X23

∗ ∗ X33

⎤
⎦ > 0,the following integral

inequality holds:

−
∫ t

t−ς(t)

ẋT (s)X33ẋ(s)ds

≤
∫ t

t−ς(t)

⎡
⎣ x(t)
x(t−ς(t))

ẋ(s)

⎤
⎦
T⎡
⎣X11 X12 X13

∗ X22 X23

∗ ∗ 0

⎤
⎦
⎡
⎣ x(t)
x(t−ς(t))

ẋ(s)

⎤
⎦ds

(11)

Lemma 2 [3]. Let Z,H and S be real matrices of appropriate

dimensions with H satisfying HTH ≤ I ,then for any scalar

ε > 0,the following inequality holds:

ZHS + (ZHS)T ≤ ε−1ZZT + εSTS (12)

III. MAIN RESULTS

In this section,we consider the case of ΔAi(t) =
ΔBi(t) = ΔCi(t) = ΔDi(t) = ΔEi(t) = ΔFi(t) = 0 in

system (9),a new Lyapunov functional is constructed to

derive the condition under which the system (9) are

stochastically stable in the mean square.For representation

convenience,the following notations are introduced:

L1 = diag{ l
+
11 + l−11

2
,
l+12 + l−12

2
, . . . ,

l+1n + l−1n
2

},
L̄1 = diag{l+11l−11, l+12l−12, . . . , l+1nl−1n},

L2 = diag{ l
+
21 + l−21

2
,
l+22 + l−22

2
, . . . ,

l+2n + l−2n
2

},
L̄2 = diag{l+21l−21, l+22l−22, . . . , l+2nl−2n}
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Theorem 1 For any given scalars hi ≥ 0, ςi ≥ 0, hDi, ςDi

and integers l ≥ 1, k ≥ 1,the system (9)with leakage and

discrete delays is globally asymptotically stable if there exist

symmetric positive definite matrices P1i, P2i, Qji,Mj , (j =
1, 2, 3, 4), Sji, (j = 1, 2, . . . , 6), Rj , (j = 1, 2, . . . , 8),positive

diagonal matrices Wij , (j = 1, 2, . . . , 6) ,and any matrices

Xi =

⎡
⎣X1i X2i X3i

∗ X4i X5i

∗ ∗ X6i

⎤
⎦ , Yi =

⎡
⎣Y1i Y2i Y3i

∗ Y4i Y5i

∗ ∗ Y6i

⎤
⎦ , Ui =

⎡
⎣U1i U2i U3i

∗ U4i U5i

∗ ∗ U6i

⎤
⎦ , Vi =

⎡
⎣V1i V2i V3i

∗ V4i V5i

∗ ∗ V6i

⎤
⎦ with appropriate

dimensions,for any i = 1, 2, . . . , N ,such that the following

LMIs holds:

N∑
j=1

πijQkj < Mk, k = 1, 2, 3, 4 (13)

N∑
j=1

πijSkj < Rk, k = 1, 2, . . . , 6 (14)

⎡
⎣X1i X2i X3i

∗ X4i X5i

∗ ∗ R7

⎤
⎦ ≥ 0 (15)

⎡
⎣Y1i Y2i Y3i

∗ Y4i Y5i

∗ ∗ R7

⎤
⎦ ≥ 0 (16)

⎡
⎣U1i U2i U3i

∗ U4i U5i

∗ ∗ R8

⎤
⎦ ≥ 0 (17)

⎡
⎣V1i V2i V3i

∗ V4i V5i

∗ ∗ R8

⎤
⎦ ≥ 0 (18)

⎡
⎣Ξ + Ξ̄ ς̃ℵTR7 h̃�TR8

∗ −ς̃R7 0

∗ ∗ −h̃R8

⎤
⎦ < 0 (19)

where

ℵ =
[
0 −Ai 0n×9n Ci 0 Ei

]
� =

[
0n×4n Di 0 Fi 0 −Bi 0n×5n

]
Ξ = [Ξmn], Ξ̄ = [Ξ̄mn], (m,n = 1, 2, . . . , 14)

Ξ11=Q1i−(1− πiiςi
l

)Ẽ1Q1iẼ
T
1 +ĨT1 (πiiP1i+Q3i+ S1i

+ S2i + σM3 + ς̃(R1 +R2)− L̄2Wi4 + ςiX1i

+ 2X3i)Ĩ1 +
ς̃

l
M1

Ξ12=−ĨT1 P1iAi, Ξ13=−(1− πiiςi
l

)Ẽ1Q1iĨ
T
3

Ξ14= ςiĨ1X2i − ĨT1 X3i + ĨT1 X
T
5i

Ξ15= ĨT1 L2Wi4, Ξ1,12= ĨT1 P1iCi

Ξ1,14= ĨT1 P1iEi, Ξ22=−Q3i

Ξ33=−(1− πiiςi
l

)Ĩ3Q1iĨ
T
3 − (1− πiiςi)S1i − L̄2Wi6

+ ςiY4i − 2Y5i

Ξ34= ςiY
T
2i − Y T

3i + Y5i, Ξ36= L̄2Wi6

Ξ44=−(1− ςDi)S2i + πiiςiS2i − L̄2Wi5 + ςi(X4i + Y1i)

+ 2Y T
3i − 2X5i

Ξ47=L2Wi5, Ξ55=S5i + ς̃R5 −Wi4

Ξ58=DT
i P2iĨ2, Ξ66=−Wi6

Ξ77=−(1− ςDi)S5i + πiiςiS5i −Wi5,Ξ78=FT
i P2iĨ2

Ξ88=Q2i−(1− πiihi

k
)Ẽ2Q2iẼ

T
2 +ĨT2 (πiiP2i+Q4i+ S3i

+ S4i + δM4 + h̃(R3 +R4)− L̄1Wi1

+ hiU1i + 2U3i)Ĩ2 +
h̃

k
M2

Ξ89=−ĨT2 P2iBi,Ξ8,10=−(1− πiihi

k
)Ẽ2Q2iĨ

T
4

Ξ8,11= ĨT2 (U2i − U3i + UT
5i), Ξ8,12= ĨT2 L1Wi1,Ξ99=−Q4i

Ξ10,10=−(1− πiihi

k
)Ĩ4Q2iĨ

T
4 − S3i + πiihiS3i − L̄1Wi3

+ hY4i − 2V5i

Ξ10,11=hiV
T
2i − V T

3i + V5i, Ξ10,13=L1Wi3

Ξ11,11=−(1− hDi)S4i + πiihiS4i − L̄1Wi2 + hiU4i − 2U5i

+ 2V T
3i + hiV1i

Ξ11,14=L1Wi2, Ξ12,12=S6i + h̃R6 −Wi1

Ξ13,13=−Wi3, Ξ14,14=−(1− hDi)S6i + πiihiS6i −Wi2

Ξ̄11 = ĨT1
∑
j �=i

πijP1j Ĩ1 +
∑
j �=i

πijςj
l

Ẽ1Q1iẼ
T
1

Ξ̄13 =
∑
j �=i

πijςj
l

Ẽ1Q1iĨ
T
3

Ξ̄33 =
∑
j �=i

πijςj
l

Ĩ3Q1iĨ
T
3 +

∑
j �=i

πijςjS1i
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Ξ̄44 =
∑
j �=i

πijςjS2i, Ξ̄77 =
∑
j �=i

πijςjS5i

Ξ̄88 = ĨT2
∑
j �=i

πijP2j Ĩ2 +
∑
j �=i

πijhj

k
Ẽ2Q2iẼ

T
2

Ξ̄8,10 =
∑
j �=i

πijhj

k
Ẽ2Q2iĨ

T
4

Ξ̄10,10 =
∑
j �=i

πijhjS3i +
∑
j �=i

πijhj

k
Ĩ4Q2iĨ

T
4

Ξ̄11,11 =
∑
j �=i

πijhjS4i, Ξ̄14,14 =
∑
j �=i

πijhjS6i

All the other items in matrix Ξ and Ξ̄ are 0.

Ĩ1 =
[
In 0n×(l−1)n

]
, Ĩ2 =

[
In 0n×(k−1)n

]
Ĩ3 =

[
0n×(l−1)n In

]
, Ĩ4 =

[
0n×(k−1)n In

]
Ĩ5 =

[
In×(l+6)n 0n×(k+6)n

]
Ĩ6 =

[
0n×(l+6)n In×(k+6)n

]

Ẽ1 =

⎡
⎢⎢⎢⎢⎣
0 0 . . . 0 0
In 0 . . . 0 0
0 In . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . In 0

⎤
⎥⎥⎥⎥⎦
ln×ln

Ẽ2 =

⎡
⎢⎢⎢⎢⎣
0 0 . . . 0 0
In 0 . . . 0 0
0 In . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . In 0

⎤
⎥⎥⎥⎥⎦
kn×kn

Proof: Construct the following Lyapunov-Krasovskii

functional:

V (xt, yt, r(t)) =
8∑

m=1

Vi(xt, yt, r(t))

with

V1(xt, yt, r(t)) = xT (t)P1(r(t))x(t) + yT (t)P2(r(t))y(t)

V2(xt, yt, r(t)) =

∫ t

t− ςi
l

γT
1 (s)Q1(r(t))r1(s)ds

+

∫ t

t−hi
k

γT
2 (s)Q2(r(t))r2(s)ds

where

γT
1 (s) =

[
xT (s) xT (s− ςi

l ) . . . xT (s− (l−1)ςi
l )

]
,

γT
2 (s) =

[
yT (s) yT (s− hi

k ) . . . yT (s− (k−1)hi

k )
]

V3(xt, yt, r(t)) =

∫ t

t−σ

xT (s)Q3(r(t))x(s)ds

+

∫ t

t−δ

yT (s)Q4(r(t))y(s)ds

V4(xt, yt, r(t)) =

∫ t

t−ς(r(t))

xT (s)S1(r(t))x(s)ds

+

∫ t

t−ς(r(t),t)

xT (s)S2(r(t))x(s)ds

+

∫ t

t−h(r(t))

yT (s)S3(r(t))y(s)ds

+

∫ t

t−h(r(t),t)

yT (s)S4(r(t))y(s)ds

V5(xt, yt, r(t)) =

∫ t

t−ς(r(t),t)

gT (x(s))S5(r(t))g(x(s))ds

+

∫ t

t−h(r(t),t)

fT (y(s))S6(r(t))f(y(s))ds

V6(xt, yt, r(t)) =

∫ 0

− ς̃
l

∫ t

t+θ

γT
1 (s)M1γ1(s)dsdθ

+

∫ 0

− h̃
k

∫ t

t+θ

γT
2 (s)M2γ2(s)dsdθ

+

∫ 0

−σ

∫ t

t+θ

xT (s)M3x(s)dsdθ

+

∫ 0

−δ

∫ t

t+θ

yT (s)M4y(s)dsdθ

V7(xt, yt, r(t)) =

∫ 0

−ς̃

∫ t

t+θ

xT (s)(R1 +R2)x(s)dsdθ

+

∫ 0

−h̃

∫ t

t+θ

yT (s)(R3 +R4)y(s)dsdθ

+

∫ 0

−ς̃

∫ t

t+θ

gT (x(s))R5g(x(s))dsdθ

+

∫ 0

−h̃

∫ t

t+θ

fT (y(s))R6f(y(s))dsdθ

V8(xt, yt, r(t)) =

∫ 0

−ς̃

∫ t

t+θ

ẋT (s)R7ẋ(s)dsdθ

+

∫ 0

−h̃

∫ t

t+θ

ẏT (s)R8ẏ(s)dsdθ

Then, taking the derivative of V (xt, yt, r(t)) with respect to t

along the system (7) yields

LV1(xt, yt, i) = 2xT (t)P1iẋ(t) + xT (t)

⎛
⎝ N∑

j=1

πijP1j

⎞
⎠x(t)

+ 2yT (t)P2iẏ(t) + yT (t)

⎛
⎝ N∑

j=1

πijP2j

⎞
⎠ y(t)

(20)
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LV2(xt, yt, i) = rT1 (t)Q1ir1(t)− rT1 (t−
ςi
l
)Q1ir1(t− ςi

l
)

+

N∑
j=1

πijςj
l

rT1 (t−
ςi
l
)Q1ir1(t− ςi

l
)

+ rT2 (t)Q2ir2(t)− rT2 (t−
hi

k
)Q2ir2(t− hi

k
)

+

N∑
j=1

πijhj

k
rT2 (t−

hi

k
)Q2ir2(t− hi

k
)

+

∫ t

t− ςi
l

γT
1 (s)

⎛
⎝ N∑

j=1

πijQ1j

⎞
⎠ γ1(s)ds

+

∫ t

t−hi
k

γT
2 (s)

⎛
⎝ N∑

j=1

πijQ2j

⎞
⎠ γ2(s)ds

(21)

LV3(xt, yt, i) = xT (t)Q3ix(t)− xT (t− σ)Q3ix(t− σ)

+

∫ t

t−σ

xT (s)

⎛
⎝ N∑

j=1

πijQ3j

⎞
⎠x(s)ds

+ yT (t)Q4iy(t)− yT (t− δ)Q4iy(t− δ)

+

∫ t

t−δ

yT (s)

⎛
⎝ N∑

j=1

πijQ4j

⎞
⎠ y(s)ds

(22)

LV4(xt, yt, i)≤xT (t)S1ix(t)−xT (t−ςi)S1ix(t−ςi)

+

⎛
⎝ N∑

j=1

πijςj

⎞
⎠xT (t−ςi)S1ix(t−ςi)

+

∫ t

t−ςi

xT (s)

⎛
⎝ N∑

j=1

πijS1j

⎞
⎠x(s)ds

+xT(t)S2ix(t)−(1−ςDi)x
T(t−ςi(t))S2ix(t−ςi(t))

+

⎛
⎝ N∑

j=1

πijςj(t)

⎞
⎠xT (t−ςi(t))S2ix(t−ςi(t))

+yT (t)S3iy(t)−yT (t−hi)S3iy(t−hi)

+

⎛
⎝ N∑

j=1

πijhj

⎞
⎠ yT (t−hi)S3iy(t−hi)

+

∫ t

t−hi

yT (s)

⎛
⎝ N∑

j=1

πijS3j

⎞
⎠ y(s)ds

+yT(t)S4iy(t)−(1−hDi)y
T(t−hi(t))S4iy(t−hi(t))

+

⎛
⎝ N∑

j=1

πijhj(t)

⎞
⎠ yT (t−hi(t))S4iy(t−hi(t))

+

∫ t

t−ςi(t)

xT (s)

⎛
⎝ N∑

j=1

πijS2j

⎞
⎠x(s)ds

+

∫ t

t−hi(t)

yT (s)

⎛
⎝ N∑

j=1

πijS4j

⎞
⎠ y(s)ds (23)

LV5(xt, yt, i)≤gT(x(t))S5ig(x(t))+fT(y(t))S6if(y(t))

−(1−ςDi)g
T(x(t−ςi(t)))S5ig(x(t−ςi(t)))

−(1−hDi)f
T(y(t−hi(t)))S6if(y(t−hi(t)))

+

⎛
⎝ N∑

j=1

πijςj(t)

⎞
⎠ gT(x(t−ςi(t)))S5ig(x(t−ςi(t)))

+

⎛
⎝ N∑

j=1

πijhj(t)

⎞
⎠ fT(y(t−hi(t)))S6if(y(t−hi(t)))

+

∫ t

t−ςi(t)

gT (x(s))

⎛
⎝ N∑

j=1

πijS5j

⎞
⎠ g(x(s))ds

+

∫ t

t−hi(t)

fT (y(s))

⎛
⎝ N∑

j=1

πijS6j

⎞
⎠ f(y(s))ds

(24)

LV6(xt, yt, i) =
ς̃

l
γT
1 (t)M1γ1(t) +

h̃

k
γT
2 (t)M2γ2(t)

+ σxT (t)M3x(t) + δyT (t)M4y(t)

−
∫ t

t− ς̃
l

γT
1 (s)M1γ1(s)ds−

∫ t

t− h̃
k

γT
2 (s)M2γ2(s)ds

−
∫ t

t−σ

xT (s)M3x(s)ds−
∫ t

t−δ

yT (s)M4y(s)ds

(25)

LV7(xt, yt, i) = ς̃xT (t)(R1 +R2)x(t) + h̃yT (t)(R3 +R4)y(t)

+ ς̃gT (x(t))R5g(x(t)) + h̃fT (y(t))R6f(y(t))

−
∫ t

t−ς̃

xT (s)(R1+R2)x(s)ds

−
∫ t

t−h̃

yT (s)(R3+R4)y(s)ds

−
∫ t

t−ς̃

gT (x(s))R5g(x(s))ds

−
∫ t

t−h̃

fT (y(s))R6f(y(s))ds

(26)

LV8(xt, yt, i) ≤ ς̃ ẋT (t)R7ẋ(t) + h̃ẏT (t)R8ẏ(t)

−
∫ t

t−ςi

ẋT (s)R7ẋ(s)ds

−
∫ t

t−hi

ẏT (s)R8ẏ(s)ds

(27)

Using Lemma 1 and (15)-(18),one can obtain the following
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inequalities

−
∫ t

t−ςi

ẋT (s)R7ẋ(s)ds

≤
∫ t

t−ςi(t)

⎡
⎣ x(t)
x(t−ςi(t))

ẋ(s)

⎤
⎦
T⎡
⎣X1i X2i X3i

∗ X4i X5i

∗ ∗ 0

⎤
⎦
⎡
⎣ x(t)
x(t−ςi(t))

ẋ(s)

⎤
⎦ ds

+

∫ t−ςi(t)

t−ςi

⎡
⎣x(t−ςi(t))

x(t−ςi)
ẋ(s)

⎤
⎦
T⎡
⎣Y1i Y2i Y3i

∗ Y4i Y5i

∗ ∗ 0

⎤
⎦
⎡
⎣x(t−ςi(t))

x(t−ςi)
ẋ(s)

⎤
⎦ ds

(28)

−
∫ t

t−hi

ẏT (s)R8ẏ(s)ds

≤
∫ t

t−hi(t)

⎡
⎣ y(t)
y(t−hi(t))

ẏ(s)

⎤
⎦
T⎡
⎣U1i U2i U3i

∗ U4i U5i

∗ ∗ 0

⎤
⎦
⎡
⎣ y(t)
y(t−hi(t))

ẏ(s)

⎤
⎦ ds

+

∫ t−hi(t)

t−hi

⎡
⎣y(t−hi(t))
y(t− hi)

ẏ(s)

⎤
⎦
T⎡
⎣V1i V2i V3i

∗ V4i V5i

∗ ∗ 0

⎤
⎦
⎡
⎣y(t−hi(t))
y(t− hi)

ẏ(s)

⎤
⎦ ds

(29)

For positive diagonal matrices Wij , j = 1, 2, . . . , 6,we can get

from (5) that[
y(t)

f(y(t))

]T [−L̄1Wi1 L1Wi1

∗ −Wi1

] [
y(t)

f(y(t))

]
≥ 0 (30)

[
y(t−hi(t))

f(y(t−hi(t)))

]T[−L̄1Wi2 L1Wi2

∗ −Wi2

][
y(t−hi(t))

f(y(t−hi(t)))

]
≥0

(31)

[
y(t− hi)

f(y(t− hi))

]T [−L̄1Wi3 L1Wi3

∗ −Wi3

] [
y(t− hi)

f(y(t− hi))

]
≥ 0

(32)

[
x(t)

g(x(t))

]T [−L̄2Wi4 L2Wi4

∗ −Wi4

] [
x(t)

g(x(t))

]
≥ 0 (33)

[
x(t−ςi(t))

g(x(t−ςi(t)))

]T[−L̄2Wi5 L2Wi5

∗ −Wi5

][
x(t−ςi(t))

g(x(t−ςi(t)))

]
≥0

(34)

[
x(t− ςi)

g(x(t− ςi))

]T [−L̄2Wi6 L2Wi6

∗ −Wi6

] [
x(t− ςi)

g(x(t− ςi))

]
≥ 0

(35)

From (13)-(14) and (20)-(35),one can obtain LV (xt, yt, i) ≤
ξT (t)Σiξ(t).
where

Σi = Ξ+ Ξ̄ + ς̃ℵTR7ℵ+ h̃�TR8�
ξT (t) =

[
ξT1 (t) ξT2 (t)

]
ξT1 (t) = [γT

1 (t), x
T (t− σ), xT (t− ςi), x

T (t− ςi(t)), g
T (x(t)),

gT (x(t− ςi)), g
T (x(t− ςi(t)))]

ξT2 (t) = [γT
2 (t), y

T (t− δ), yT (t− hi), x
T (t− hi(t)), f

T (y(t)),

fT (y(t− hi)), f
T (y(t− hi(t)))]

According to (19) and Schur complement,we can get

Σi < 0,let λ1 = minλmin{−Σi}, i ∈ S ,so λ1 > 0.Then, by

Dynkin’s formula, we have

E {V (xt, yt, i)} − E {V (φ, ϕ, i0)}

≤ −λ1E

{∫ t

0

(|x(s)|2 + |y(s)|2)ds
}

and,hence

E

{∫ t

0

(|x(s)|2 + |y(s)|2)ds
}

≤ 1

λ1
E {V (φ, ϕ, i0)}

Based on Definition 1, the system (7) are stochastically stable

and the proof is completed.

Remark 1 Theorem 1 proposes an improved stochastically

stability criterion for Markovian jumping BAM neural

networks with leakage and discrete delays. The main idea is

to divide the delay interval into multiple segments ,and the

thinner the delay is partitioned, the more obviously the

conservatism can be reduced.

Based on Theorem 1,we have the following result for

uncertainty Markovian jumping parameters of BAM neural

networks with leakage and discrete delays.

Theorem 2 For any given scalars hi ≥ 0, ςi ≥ 0, hDi, ςDi

and integers l ≥ 1, k ≥ 1,the system (7)with leakage and

discrete delays is globally asymptotically stable if there exist

two scalars ε1 > 0, ε2 > 0,symmetric positive definite

matrices P1i, P2i, Qji,Mj , (j = 1, 2, 3, 4), Sji, (j =
1, 2, . . . , 6), Rj , (j = 1, 2, . . . , 8),positive diagonal matrices

Wij , (j = 1, 2, . . . , 6) ,and any matrices

Xi =

⎡
⎣X1i X2i X3i

∗ X4i X5i

∗ ∗ X6i

⎤
⎦ , Yi =

⎡
⎣Y1i Y2i Y3i

∗ Y4i Y5i

∗ ∗ Y6i

⎤
⎦ , Ui =

⎡
⎣U1i U2i U3i

∗ U4i U5i

∗ ∗ U6i

⎤
⎦ , Vi =

⎡
⎣V1i V2i V3i

∗ V4i V5i

∗ ∗ V6i

⎤
⎦ with appropriate

dimensions,for any i = 1, 2, . . . , N ,such that the following

LMIs holds:

N∑
j=1

πijQkj < Mk, k = 1, 2, 3, 4 (36)

N∑
j=1

πijSkj < Rk, k = 1, 2, . . . , 6 (37)

⎡
⎣X1i X2i X3i

∗ X4i X5i

∗ ∗ R7

⎤
⎦ ≥ 0 (38)

⎡
⎣Y1i Y2i Y3i

∗ Y4i Y5i

∗ ∗ R7

⎤
⎦ ≥ 0 (39)

⎡
⎣U1i U2i U3i

∗ U4i U5i

∗ ∗ R8

⎤
⎦ ≥ 0 (40)
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⎡
⎣V1i V2i V3i

∗ V4i V5i

∗ ∗ R8

⎤
⎦ ≥ 0 (41)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ+Ξ̄ ς̃ℵTR7 h̃�TR8 ℵ22
√
ε1ℵT

11 �22
√
ε2�11

∗ −ς̃R7 0 1
2R7Gi 0 0 0

∗ ∗ −h̃R8 0 0 1
2R8Gi 0

∗ ∗ ∗ −ε1I 0 0 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
<0

(42)

where

ℵ11 =
[
0 −Eai 0n×9n Eci 0 Eei

]
ℵ1 =

[ℵ11 0 0
]

ℵ22 =
[
GT

i P1iĨ1 0n×13n

]T
ℵ2 =

[ℵT
22

1
2G

T
i R7 0

]T
�11 =

[
0n×4n Edi 0 Efi 0 −Ebi 0n×5n

]
�1 =

[�11 0 0
]

�22 =
[
0n×7n GT

i P2iĨ2 0n×6n

]T
�2 =

[�T
22 0 1

2G
T
i R8

]T
Proof: Replacing Ai, Bi, Ci, Di, Ei, Fi in (19) with

Ai + GiFi(t)Eai, Bi + GiFi(t)Ebi, Ci + GiFi(t)Eci, Di +
GiFi(t)Edi, Fi + GiFi(t)Efi,respectively,(19) is equivalent

to the following condition:⎡
⎣Ξ + Ξ̄ ς̃ℵTR7 h̃�TR8

∗ −ς̃R7 0

∗ ∗ −h̃R8

⎤
⎦+ ℵT

1 F
T
i (t)ℵT

2 + ℵ2Fi(t)ℵ1

+ �T
1 F

T
i (t)�T

2 + �2Fi(t)�1 < 0
(43)

According to Lemma 2,(43) is true if there exist two scalars

ε1, ε2 > 0 such that the following inequality holds:⎡
⎣Ξ + Ξ̄ ς̃ℵTR7 h̃�TR8

∗ −ς̃R7 0

∗ ∗ −h̃R8

⎤
⎦+ ε−1

1 ℵ2ℵT
2 + ε1ℵT

1 ℵ1

+ ε−1
2 �2�T

2 + ε2�T
1 �1 < 0

(44)

Using the Schur complement shows that (44) is equivalent to

(42).This completes the proof.

Remark 2 In this paper,Theorem 1 and Theorem 2 require

the upper bound of the derivative of time-varying hDi, ςDi

known.However,in practice,hDi, ςDi are unknown.Considering

this situation,we can set Sji = 0, j = 1, 2, . . . , 6 in Theorem

1 and Theorem 2.

TABLE I
MAXIMUM VALUE OF ς̃ WITH DIFFERENT l, k,UNKNOWN ςD, BY

Method hD = 0.1 hD = 0.3 hD = 0.5
l = 1, k = 1 0.692 0.541 0.437
l = 1, k = 2 1.573 1.268 1.025
l = 2, k = 3 1.917 1.901 1.873
l = 3, k = 4 2.589 2.448 2.098

TABLE II
MAXIMUM VALUE OF h̃ WITH DIFFERENT l, k,UNKNOWN hD, BY

Method ςD = 0.1 ςD = 0.3 ςD = 0.5
l = 1, k = 1 0.753 0.675 0.542
l = 1, k = 2 1.178 1.025 0.978
l = 2, k = 3 1.769 1.561 1.252
l = 3, k = 4 2.364 2.237 2.034

IV. EXAMPLE

In this section,we provide one numerical example to

demonstrate the effectiveness and less conservatism of our

delay-dependent stability criteria.

Example 1 Consider delayed BAM neural networks with

uncertainty Markovian jumping parameters as follows:{
ẋ(t)=−Aix(t− σ) + Cif(y(t)) + Eif(y(t− hi(t)))

ẏ(t)=−Biy(t− δ) +Dig(x(t)) + Fig(x(t− ςi(t)))

where

A1 =

[
1.8 0
0 2.2

]
, A2 =

[
2.3 0
0 1.6

]
, B1 =

[
2.5 0
0 2.2

]
,

B2 =

[
1.9 0
0 3.1

]
, C1 =

[−1 0
−1 −1

]
, C2 =

[
0.4 −0.3
−0.8 0.1

]
,

D1 =

[
0.1 0
0 −0.1

]
, D2 =

[−0.6 −0.8
0 0.1

]
, E1 =

[
0.9 0.1
0.1 0.5

]
,

E2 =

[
0.3 0.6
−0.5 −0.9

]
, F1 =

[
0.3 0.1
0.1 0.4

]
, F2 =

[−0.4 0.1
0.1 −0.7

]
,

π =

[−7 7
6 −6

]

In this example,we assume condition σ = δ = 0.1.In Table

I,we consider the case of h1 = h2 = 0.1,the upper bound of

ς̃ with different l, k,unknown ςD.In Table II,we consider the

other case of ς1 = ς2 = 0.3,the upper bound of h̃ with

different l, k,unknown hD.According to this two Tables,we

can see this example shows that the stability condition gives

much less conservative results in this paper.

V. CONCLUSION

In this present paper,we have investigated the problem of

stability for uncertainty Markovian jumping parameters of

BAM neural networks with leakage and discrete delays.Two

sufficient conditions have been presented.The obtained

criteria are less conservative because free-weighting matrices

method and a convex optimization approach are

considered.Finally,one example has been given to illustrate

the effectiveness of the proposed method.

THEOREM 1 IN EXAMPLE 1

THEOREM 1 IN EXAMPLE 1
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