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Abstract—We study the problem of reconstructing a three di-
mensional binary matrices whose interiors are only accessible through
few projections. Such question is prominently motivated by the
demand in material science for developing tool for reconstruction of
crystalline structures from their images obtained by high-resolution
transmission electron microscopy. Various approaches have been sug-
gested to reconstruct 3D-object(crystalline structure) by reconstruct-
ing slice of the 3D-object. To handle the ill-posedness of the problem,
a priori information such as convexity, connectivity and periodicity
are used to limit the number of possible solutions. Formally, 3D-
object(crystalline structure) having a priory information is modeled
by a class of 3D-binary matrices satisfying a priori information.
We consider 3D-binary matrices with periodicity constraints, and
we propose a polynomial time algorithm to reconstruct 3D-binary
matrices with periodicity constraints from two orthogonal projections.

Keywords—3D-Binary Matrix Reconstruction, Computed To-
mography, Discrete Tomography, Integral Max Flow Problem.

I. INTRODUCTION

THE area of discrete tomography is concerned about
reconstruction of a discrete object or its geometrical

properties from its projections or some other information.
This has application in fields such as: computer vision, VLSI
design, image processing [12], statistical data security [9], bi-
plane angiography [11], graph theory, crystallography, medical
imaging [7] etc. [5] gives the fundamentals related to this
topic.
Peter Schwander and Larry Shepp proposed a model that
identifies each possible atom location with a cell of integer
lattice Z3 and the electron beams with lines parallel to given
direction. The value 1 in a cell of Z3 denotes the presence
of atom in the corresponding location of crystal and the
value 0 in a cell of Z3 denotes the absence of atom in the
corresponding location of the crystal. The number of atoms
that are present in the line passing through the crystal defines
the projection of the structure along the line [10]. The set of
all projections of structure along each line parallel to given
direction denotes one projection of the object. The number
of atoms present in a line(straight) can be computed by
making quantitative analysis of two-dimensional images taken
by the transmission electron microscope. The transmission
electron microscope uses high energy rays which penetrates
the crystal. Hence to get more projections, large amount of
energy is to be transmitted through the crystal, which can
damage the crystal itself(the atomic configuration may be
changed). The conventional Computed Tomography needs
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more projections(usually hundreds of projections) for effective
reconstruction of the objects. Discrete T omography consid-
ers the case where the objects need to be reconstructed with
few projections(usually two to four).

As crystal is represented by binary matrix, reconstructing
crystal is same as reconstructing 3D-binary matrix. 3D-binary
matrix can be reconstructed by slice-by-slice reconstruction.
Hence the problem of reconstructing 3D-binary matrix is
reduced to reconstructing 2D-binary matrix. Reconstructing
2D-binary matrix was studied much before the emergence of
its practical application. In 1957 Ryser [8] and Gale [3] gave
a necessary and sufficient condition for a pair of vectors being
the projections of binary matrices along horizontal and vertical
directions. The projections in horizontal and vertical directions
are equal to row and column sums of the matrix. They have
also given necessary and sufficient conditions for existence
of unique 2D-binary matrix which has a given pair of row
sum and column sum. In general, the class of binary matrices
having same row and column sums is very large. Though
the reconstructed matrix and the original matrix have same
projections, they may be very different. One of the main issues
in Discrete T omography is to reconstruct the object which
is more close to the original object with few projections only.
One approach to reduce the class of possible solutions is to
use some a priori information about the objects. For instance,
convex binary matrices have been reconstructed uniquely from
projections taken in some prescribed set of four directions
in [4]. An another approach is given in [6], where the class
of binary matrices having same projections is assumed to
have some Gibs distribution. By using this information, object
which is close to the original unknown object is reconstructed.

We consider the first approach, periodicity in particular,
to limit the possible solutions of 3D-Binary matrices having
given projections. Similar approach has been suggested in
[1]. In [1], some variance of 2D-periodic-binary matrices are
reconstructed in polynomial time. Those algorithms can be
used to reconstruct 3D-binary matrices in which periodicity
lies with in the slice( not across the slices ). In general,
periodicity structure need not be restricted to within slice.
So we consider the reconstruction of 3D-binary matrix with
periodicity constraints not restricted to within slice.
In this paper, we introduce some variance of 3D-binary matri-
ces with periodicity constraints and we give a polynomial time
algorithm for reconstructing one variant of 3D-binary matrix
with periodicity from two orthogonal projections(projections
along X and Y or Y and Z or X and Z axes). We leave other
variants of this problems open.
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Fig. 1. Orientation of 3D-Matrix

II. NOTATIONS AND DEFINITIONS
Let Al×m×n = (ai,j,k) be a 3D-binary matrix of order

l × m × n, where 1 ≤ i ≤ l, 1 ≤ j ≤ m, 1 ≤ k ≤ n. Let
X = (xj,k) and Y = (yi,k) be orthogonal projections along
the axes x and y respectively, where

xj,k =

n∑
i=1

ai,j,k yi,k =

m∑
j=1

ai,j,k

and 1 ≤ i ≤ l, 1 ≤ j ≤ m and 1 ≤ k ≤ n. A 3D-binary
matrix Al×m×n = (ai,j,k) is said to be (p,q,r)-periodic if
ai,j,k = ai+p,j+q,k+r where 1 ≤ i + p ≤ l, 1 ≤ j + q ≤
m, 1 ≤ k + r ≤ n.
Example 1: A (1,1,1)-periodic matrix and its two
orthogonal projection matrices are given bellow(We use
layer by layer representation of 3D-binary matrix with the
orientation given in Fig 1.).

3D-binary matrix (layer-by-layer representation) A:⎡
⎢⎢⎣
1 1 0 0
0 1 1 1
1 0 1 1
1 1 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
0 0 0 1
0 1 1 0
1 0 1 1
0 1 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
1 1 0 1
1 0 0 0
0 0 1 1
0 1 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 1 0 1
1 1 1 0
1 1 0 0
1 0 0 1

⎤
⎥⎥⎦

Projection matrices of A:

Y =

⎡
⎢⎢⎣
2 1 3 3
3 2 1 3
3 3 2 2
3 2 2 2

⎤
⎥⎥⎦

and

X =

⎡
⎢⎢⎣

3 3 3 2
1 2 2 3
2 2 1 3
4 3 1 2

⎤
⎥⎥⎦

where Y and X are projections of given matrix A along y
and x axes respectively.
For any given triple (x, y, z) such that ax,y,z = 1 we define

the set P of propagation of the value in position (x, y, z) in
the direction (p, q, r),
P = {(x + kp, y + kq, z + kr)| 1 ≤ x + kp ≤ l, 1 ≤
y + kq ≤ m, 1 ≤ z + kr ≤ n, k ∈ Z}. Such set is called

as line. Each line has a starting point, which is its left most
point, and an ending point , which is rightmost point. We say
a line starts on column j in layer k and ends on column j

′ in
layer k

′ when its starting and ending points are on column j
in layer k and column j

′ in layer k
′ respectively.

Let A be a (p, q, r)-periodic matrix. From periodicity it
follows that if there exists indices 1 ≤ i ≤ l and 1 ≤ k ≤ n
such that yi,k = yi+p,k+r + a where 1 ≤ i + p ≤ l,
1 ≤ k + r ≤ n, then the positions on row i and layer k, from
column m− q + 1 to column m, contains at least a elements
equal to 1. Such positions form a box at right end of the row i
, and the box is called as right box(rt) yi,k + a = yi+p,k+r

where 1 ≤ i + p ≤ l, 1 ≤ k + r ≤ n, then the positions
on row i + p and layer k + r, from column 1 to column q,
contains at least a elements equal to 1. Such positions form
a box at left end of the row i + p , and the box is called as
left box(rt).
We define the upper and lower boxes as follows: If there
exists indices 1 ≤ j ≤ m and 1 ≤ k ≤ n such that xj,k =
xj+q,k+r + a when 1 ≤ j + q ≤ m, 1 ≤ k + r ≤ n, then
the positions on column j and layer k, from row l − p + 1 to
row l, contains at least a elements equal to 1. Such positions
form a box at end of the column j , and the box is called
as lower box(lw), and if xj,k + a = xj+q,k+r where 1 ≤
j + q ≤ m, 1 ≤ k + r ≤ n, then the positions on column
j + q and layer k+ r, from row 1 to row p, contains at least a
elements equal to 1. Such positions form a box at beginning
of the column j + q , and the box is called as upper box(up)
We define diagonally homogeneous and strongly diagonally
homogeneous 2D-matrices as follows. A 2D-matrix M =
(mi,j) is said to be (a, b)-diagonally homogeneous if mi, j =
mi+a, j+b for all 1 ≤ i + a ≤ l, 1 ≤ j + b ≤ m. A 2D-
matrix M = (mi,j) is said to be (a, b)-strongly diagonally
homogeneous if M is diagonally homogeneous and
for all 1 ≤ i + a ≤ l, m − b + 1 ≤ j ≤ m, mi, j =
mi+a, (j+b)mod m.

III. RECONSTRUCTION OF (1,1,1)-PERIODIC MATRIX

In this section, we give an algorithm to reconstruct a (1,1,1)
periodic matrix of size n × n × n from two orthogonal
projections.
Let A be a (1,1,1)-periodical matrix. By definition of boxes
for p = 1, q = 1 and r = 1 the boxes are reduced to only
one cell and the integer a of the definition takes only the
values 0 or 1. if there exists indexes 1 ≤ i + 1 ≤ n and
1 ≤ k + 1 ≤ n or 1 ≤ j + 1 ≤ n and 1 ≤ k + 1 ≤ n such that
yi,k = yi+1,k+1 + 1 then ai,m,k = 1.
yi,k + 1 = yi+1,k+1 then ai+1,1,k+1 = 1.
xj,k = xj+1,k+1 + 1 then aj,l,k = 1.
xi,k + 1 = xj+1,k+1 then aj+1,1,k+1 = 1.

We define the common portion of all matrices whose
projections are same as given projections as Fixed part
and the remaining portion of the matrix as Mobile part
The following Fixed part algorithm uses the previous
box properties to extract the fixed part(called F ) of
the reconstructed matrix. The following algorithm takes
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orthogonal projection matrices pair (X, Y ) and gives the
fixed part of the reconstructed matrix (namely the matrix F )
and a pair of matrices ( X ′, Y ′ ) that are projections of only
mobile part of the reconstructed matrix.

Algorithm: Fixed part Reconstruction
Input: A pair of integral matrices (X, Y ) where X = (xj,k)
and Y = (yi,k) are projection of 3D-binary matrix along x
and y axes respectively.
Output: If flag = 0, then it gives the matrix (Fixed part) F
and a pair of integral matrices (projections of the mobile part)
(X ′, Y ′) or if flag = 1, then Failure in the reconstruction;
Initialization: flag := 0, t := 0, X t := X, Y t :=
Y, F := 0l×m×n;

while Xt and Y t are positives and diagonally
non homogeneous matrices and flag = 0 do
while Y t is positive and diagonally non homogeneous
matrix and flag = 0 do
Xt+1 := Xt, Y t+1 := Y t

for all indexes 1 ≤ i, k ≤ n
such that yt

i, k �= yt
i+1, k+1;

if yt
i, k = yt

i+1, k+1 + 1 then
x := i, y := n, z := k,
Propagation(x, y, z, F, t)

else if yt
i, k + 1 = yt

i+1, k+1 then
x := i + 1, y := 1, z := k + 1,
Propagation(x, y, z, F, t)

else flag := 1;
t := t + 1;

end while;
while Xt is positive and diagonally non homogeneous

matrix and flag = 0 do
Xt+1 := Xt, Y t+1 := Y t

for all indexes 1 ≤ i, k ≤ n
such that xt

j, k �= xt
j+1, k+1;

if xt
j, k = xt

j+1, k+1 + 1 then
x := n, y := j, z := k,
Propagation(x, y, z, F, t)

else if xt
j, k + 1 = xt

j+1, k+1 then
x := 1, y := j + 1, z := k + 1,
Propagation(x, y, z, F, t)

else flag := 1;
t := t + 1;

end while;
end while;
X ′ = Xt, Y ′ = Y t and return (X ′, Y ′).

Algorithm: Propagation(x, y, z, F, t)
P = {(x + r, y + r, z + r) | 1 ≤ x + r ≤ n,

1 ≤ y + r ≤ n, 1 ≤ z + r ≤ n, r ∈ Z}
For all ( i, j k ) ∈ P do

fi,j,k := 1, xt+1
j,k := xt

j,k −1, yt+1
i,k := yt

i,k −1;

Algorithm: Make strong homogeneous
Input: The matrix F and diagonally homogeneous matrices
(X ′, Y ′)

Output: diagonally strong homogeneous matrices (X, Y )

Initialization: X := X ′, Y := Y ′;
for all 1 ≤ i ≤ n do

if (yi,n < yi+1,1 )
Propagation(i + 1, 1, 1, F, t)

if (yi,n > yi+1,1 )
Propagation(i, n, n, F, t)

Algorithm: loop(x, y, z)
P = {(x′, y′, z′) | x′ := (x + r)mod n when (x +

r)mod n �= 0, otherwise n,
y′ := (y+r)mod n when (y+r)mod n �= 0, otherwise n,
Z ′ := (z + r)mod n when (z + r)mod n �=
0, otherwise n, r ∈ Z}
If there exists ( i, j, k ) ∈ P such that

ai,j,k = 1, or xj,k = 0 or yi,k = 0, return 0,
otherwise return 1.
Theorem 1: Let X and Y be the projections of unknown

(1, 1, 1)-periodic matrix A of order ( n× n× n) along x and
y directions, F be the fixed part of A, Fx and Fy be the
orthogonal projections of F along x and y axes respectively,
and X ′ = X − Fx, Y ′ = Y − Fy. If X ′ and Y ′ are
strongly diagonally homogeneous, then there exist a binary
matrix M (mobile part) such that A′ = F + M and the
projections of A are same as the projections of A′ along x
and y directions.
Proof. Let G = (V1, V2, E) be a bipartite graph where
V1 = {di | 1 ≤ i ≤ n } and V2 = {d′i | 1 ≤ i ≤ n }, and
E = {(di, d′j)| loop(1, j + i − 1, i) = 1}.
Corresponding to G, We define a networkG′ = ( V, E′, C ).
where V = V1 ∪ V2 ∪ {s, t}. E′ = E ∪ {(s, v)|v ∈
V1} ∪ {(v, t)|v ∈ V2}.
C(u, v) = 1 if u ∈ V1 and v ∈ V2

for each 1 ≤ i ≤ n, C(s, di) = y1,i C(d′i, t) = x1,i

Let f be a flow function whose net flow is maximum.
Let us construct M = (mi,j,k) where 1 ≤ i, j ≤ n as
follows:
Initialize M with zero matrix.
m1,i+j−1,i = 1 if f(di, d

′
j) = 1,

For each ( i, j, k ) ∈ P = {(x′, y′, z′) | x′ :=
(1 + r)mod l when (1 + r)mod l �= 0, otherwise n,
y′ := (i + j − 1 + r)mod n when (i + j − 1 + r)mod n �=
0, otherwise n,
Z ′ := (i + r)mod n when (i + r)mod n �=
0, otherwise n, r ∈ Z}, mi,j,k = 1.
Let us define A′ = F +M . By the definition of E and E ′, for
every edge (di, dj) such that f(di, dj) = 1 a loop can start
from (1, j + i − 1, i). Clearly all the loops corresponding
to edges with flow value 1 are disjoint. By the definition of
loop(), no loop corresponds to an edge will intersect with
fixed part. Hence A′ is a binary matrix. By the construction
of M , projection of M along x and y axes are X ′ and Y ′

respectively. Hence projections of A′ are same as projections
of A along x and y.

Algorithm: Mobile part Reconstruction
Input: The matrix F and a pair of integral matrices (X ′, Y ′)
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Output: If flag1 = 0, then it gives the matrix A = F +M ,
where M is mobile part. If flag1 = 1, then Failure in the
reconstruction;
Initialization: flag1 := 0, X := X ′, Y := Y ′, A := F ;

Step1: Construct graph G and the corresponding net-
work G′ as defined in Theorem1 for the projection matrices
X and Y .

Step2: Compute the flow function f for the net work
G′ using integral max flow algorithm.

Step3: Compute sub graph S = {(di, dj)
′|f(di, d

′
j) =

1} of G′

Step4: for every edge (di, d′j) ∈ S do
loop reconstruction(1, j + i − 1, i, A)

Step5: return A = (ai,j,k)

Algorithm: loop reconstruction(x, y, z, A, )
Step1: Compute P = {(x′, y′, z′) | x′ := (x +

r)mod n when (x + r)mod n �= 0, otherwise l,
y′ := (y+r)mod n when (y+r)mod n �= 0, otherwise n,
Z ′ := (z + r)mod n when (z + r)mod n �=
0, otherwise n, r ∈ Z}
Step2: For all ( i, j, k ) ∈ P do

ai,j,k := 1, xj,k := xj,k − 1, yi,k := yi,k − 1;

EXAMPLE 2:
The above algorithm is illustrated with an example,
Input:

Y =

⎡
⎢⎢⎣
2 1 3 3
3 2 1 3
3 3 2 2
3 2 2 2

⎤
⎥⎥⎦ and X =

⎡
⎢⎢⎣
3 3 3 2
1 2 2 3
2 2 1 3
4 3 1 2

⎤
⎥⎥⎦

Initialization: F :⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

Make Y as diagonally homogeneous ( at the end of first
inner while loop ): F :⎡
⎢⎢⎣
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

⎤
⎥⎥⎦

and the projection matrices become

Y =

⎡
⎢⎢⎣
2 1 3 3
2 2 1 3
2 2 2 1
3 2 2 2

⎤
⎥⎥⎦ and X =

⎡
⎢⎢⎣
3 3 2 1
1 2 2 2
2 2 1 3
3 3 1 2

⎤
⎥⎥⎦

Make X as diagonally homogeneous (at the end of second
inner while loop): F :⎡
⎢⎢⎣
0 0 0 0
0 0 1 0
1 0 0 1
1 1 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
1 0 0 1
0 1 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 1 0 1
0 0 0 0
0 0 0 0
0 1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 1 0 1
0 0 1 0
1 0 0 0
0 0 0 0

⎤
⎥⎥⎦

and the projection matrices become

Y =

⎡
⎢⎢⎣
2 1 1 1
2 2 1 2
1 1 2 1
1 1 1 2

⎤
⎥⎥⎦ and X =

⎡
⎢⎢⎣
1 2 2 1
0 1 2 2
2 0 1 2
3 2 0 1

⎤
⎥⎥⎦

Make Y as diagonally homogeneous ( at the end of first
inner while loop ): F :⎡
⎢⎢⎣
0 0 0 0
0 0 1 1
1 0 0 1
1 1 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
1 0 0 1
0 1 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 1 0 1
0 0 0 0
0 0 0 0
0 1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 1 0 1
1 0 1 0
1 0 0 0
0 0 0 0

⎤
⎥⎥⎦

and the projection matrices become

Y =

⎡
⎢⎢⎣
2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

⎤
⎥⎥⎦ and X =

⎡
⎢⎢⎣
1 2 2 0
0 1 2 2
2 0 1 2
2 2 0 1

⎤
⎥⎥⎦

Make X as diagonally homogeneous ( at the end of
second inner while loop ): Since X is already diagonally
homogeneous, output of the previous step becomes the output
of present step. F :⎡
⎢⎢⎣
0 0 0 0
0 0 1 1
1 0 0 1
1 1 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
1 0 0 1
0 1 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 1 0 1
0 0 0 0
0 0 0 0
0 1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 1 0 1
1 0 1 0
1 0 0 0
0 0 0 0

⎤
⎥⎥⎦
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and the projection matrices become

Y =

⎡
⎢⎢⎣
2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

⎤
⎥⎥⎦ and X =

⎡
⎢⎢⎣

1 2 2 0
0 1 2 2
2 0 1 2
2 2 0 1

⎤
⎥⎥⎦

The bipartite graph G(left graph in fig2) and the sub graph
of bipartite G such that flow value of every edge in the sub
graph is 1(right graph namely network flow in fig.2.) are given
in fig. 2. Note that G and G

′ are defined in Theorem 1.

d d d d1 2 3 4

d d d d1 2 3 4
, , , ,

d
,
1 d

,
2 d

,
3 d

,
4

d1 d2 d3 d4

Fig. 2. Bipartite Graph and Network Flow

The Mobile part: M :⎡
⎢⎢⎣
1 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
0 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
1 0 0 0
1 0 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 1 0 0
1 0 0 1

⎤
⎥⎥⎦

The reconstructed matrix: A :⎡
⎢⎢⎣
1 1 0 0
0 1 1 1
1 0 1 1
1 1 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
0 0 0 1
0 1 1 0
1 0 1 1
0 1 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
1 1 0 1
1 0 0 0
0 0 1 1
0 1 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 1 0 1
1 1 1 0
1 1 0 0
1 0 0 1

⎤
⎥⎥⎦

and the projection matrices become

Y =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ and X =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

IV. CORRECTNESS
The algorithm Fixed part finds the fixed 1

′ by considering
the difference between adjacent row sums or column sums
in the diagonal direction . For each fixed 1, the procedure
Propagation fills F by periodicity (1, 1, 1) and decreases the
values in projection matrices.
At the end of fixed part both projection matrices are

diagonally homogeneous, and at the end of procedure
make strong diagonal both projection matrices become
strongly diagonally homogeneous. By lemma1, mobile
part can be constructed if max flow value is same as∑n

i=1 C(s, di) , and there is no 3D-periodic matrix whose
projection is equal to the given projection if max flow value
is not same as

∑n
i=1 C(s, di).

V. COMPLEXITY
The algorithm Fixed part calls procedure propagation

O(n2) times, and each propagation does O(n) operations.
Hence Fixed part computation can be done in O(n3) oper-
ations. make strong homogeneous procedure O(n2) op-
erations. Since the number of vertices in graph G′ defined
in Theorem1 is 2n + 2, the subgraph of the bipartite graph
consists of edges whose flow value is 1 in G′ can be computed
in O(n3) by using max flow algorithm for the network G′[2]
. Hence starting positions of all the loops are computed in
O(n3) operations. Since the number of loops is O(n) and
loop() works in O(n) times, placement of loops takes O(n2).
Hence the time complexity of reconstruction algorithm is
O(n3).

VI. CONCLUSION
In this paper we have extended the periodicity constraints
to 3D-binary matrices. reconstruction of 2D-periodic matrices
has been studied in [1]. As 3D-periodicity does not imply
layer wise periodicity(2D-periodicity), the 3D-reconstruction
is not straight forward. The similar greedy that works in
2D-problem to reconstruct mobile part does not work in
3D. We reduced the mobile part reconstruction problem to
max flow problem and the solution of max flow problem is
used to compute the mobile part of the reconstructed matrix.
The motivation of this study is to reconstruct the crystal
with periodicity constraints(natural constraints) so that the
reconstructed crystal is not only has the same projection as that
of unknown original crystalline structure, but also close to the
unknown original crystalline structure. By considering period-
icity constraints, the class of binary matrices representing the
crystalline structure is reduced, and hence the reconstructed
matrix is more close to unknown matrix. For instance, after
fixed part computation if the projection matrices are zero
matrices then unique solution is obtained.
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