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Abstract—The projection methods, usually viewed as the methods
for computing eigenvalues, can also be used to estimate pseudospec-
tra. This paper proposes a kind of projection methods for computing
the pseudospectra of large scale matrices, including orthogonalization
projection method and oblique projection method respectively. This
possibility may be of practical importance in applications involving
large scale highly nonnormal matrices. Numerical algorithms are
given and some numerical experiments illustrate the efficiency of
the new algorithms.
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Arnoldi, IOM(q)

I. INTRODUCTION

THe concept of pseudospectra was introduced by Trefethen
to explain the behavior of nonnormal matrices[1,2]. The

pseudospectra of a square matrix is the set of all eigenvalues of
complex matrices within a given distance. It is a useful tool
for understanding the behavior of various matrix processes.
Many phenomena (for example, hydrodynamic instability and
convergence of iterative methods for linear systems) can
not be accounted for by eigenvalue analysis but are more
understandable by examining the pseudospectra[1,2,10,15,16].

Let ‖ · ‖ be a matrix norm induced by a vector norm. The
following definitions of pseudospecra are equivalent.

• (I) Λε(A) = {z ∈ C : ‖(zI −A)−1‖ ≥ ε−1};
• (II) Λε(A) = {z ∈ C : z ∈ Λ(A + E) for some E with

‖E‖ ≤ ε};
• (III) Λε(A) = {z ∈ C : there exists v ∈ CN with ‖v‖ =

1 such that ‖(A− zI)v‖ ≤ ε;
• (IV) If ‖ · ‖ is the the 2-norm, the following definiton is

also equivalent:
Λε(A) = {z ∈ C : σmin(zI −A) ≤ ε};

Note that if zI − A is singular, we denote ‖(A − zI)−1‖ =
∞ and σmin(·) denotes the minimum singular value. From
these definitions, it immediately follows that for any ε1 >
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ε2,Λε1(A) ⊇ Λε2(A). Furthermore, Λ0(A) coincides with the
eigenvalues of A. Especially, if matrix A is normal, the Λε(A)
is just the closed ε-neighborhood of Λ(A).

In order for the pseudospectra to become a useful and
practical tool, we need efficient methods for its computation
and visualization. The straightforward way to compute pseu-
dospectra involves many applications of the singular value
decomposition (SV D)[1−3]. Definition (IV) motivates the sim-
plest algorithm for estimating Λε(A), typically referred to as
Grid-SVD, which is the most popular method for pseudospec-
tra computing, consisting of two major steps as the following.

Algorithm 1.1 The Grid-SVD Method
1) Construct a mesh Ω over a region of the complex plane

that includes Λε(A);
2) Compute σmin(zI −A) for every node z of Ω.

Subsequently, the values can be processed, e.g. by contour
plotting software, to visualize the pseudospectra by plotting
contours, denoted here by ∂Λε(A), for specific values of ε.

Another way for computing pseudospectra is called poor
man’s pseudospectrum method according to the definition (II)
of the pseudospectra based on the distribution of the random
perturbations[1].

Algorithm 1.2 The Poor Man’s Pesudospectrum Method
1) Select random matrices E with ‖E‖ < ε;
2) Superimpose plots of Λ(A + E), Computing using

standard dense matrix eigenvalue algorithms.
It is a cloudy of eigenvalues surrounding the spectrum whose
density depends upon the number of perturbations taken and
the probability distribution of the random perturbations. And
if E is generated as a full-rank random matrix, the cost
of normalizing this matrix is O(N3) operations, whereas
rank-1 matrix can be constructed and normalized in O(N2)
operations. Such perturbation plots have intuitive appeal.

The computation of pseudospectra of matrix is only a
decade old. Remarkable progress has been made in the
1990s. Most of the references date from this decade. The
literature on the numerical computation of pseudospectra is
growing, and is cited and reviewed by Trefethen[1]. There
are the inverse iteration, preliminary triangular algorithm,
Lanczos iteration, continuation algorithm and even the parallel
implementation[1−10,17−22]. The total cost of grid can be
approximated reliably by the sum of the cost of computing
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σmin(zI−A) at all grid mesh points in Ω. Clearly, as the size
of the matrix and/or the number of mesh points increase the
cost of grid becomes prohibitive. Research efforts designed to
speed-up the computation of pseudospectra have been aiming.

Since calculation of pseudospectra is much more expensive,
this suggests that it may be desirable to develop methods
for determining them iteratively. Large nonsymmetric ma-
trix eigenvalue problems are commonly solved by the pro-
jection methods such as Krylov subspace method and its
variants[11−14]. In this paper, we explore the possibility that the
projection methods can also be used to estimate pseudospectra.
The idea investigated here is that the pseudospectra of a
matrix can be approximated by those of the projection matrices
constructed by projection methods. In details, The motivation
in projection method is the following: Since the eigenvalues
of the much smaller matrix on a lower-dimensional projection
subspace are used as approximation of the eigenvalues of
the original matrix, it is hoped that in the proximity of
the approximated eigenvalues, one can also construct useful
approximations to the pseudospectra of A. For example, the
eigenvalues of Hessenberg matrix produced by Arnoldi itera-
tion are used as Ritz value approximations of the eigenvalues
of the original matrix. One can computing the pseudospectra
of large matrix by Arnoldi iteration[5].

The outline of this paper is as follows. In Section 2, we
describe the orthogonalization projection method (Arnoldi) for
computing the pseudospectra of large matrix. In Section 3, the
oblique projection method (IOM(q): Incomplete Orthogonal-
ization Method) for computing pseudospectra is proposed. In
Section 4, some numerical experiments and comparisons are
given which show that this kind of methods are powerful and
cost effective scheme for computing pseudospectra of large
matrices. Finally, we make some concluding remarks.

Throughout the paper, let ‖ · ‖ denote the 2-norm, CN×N

and RN×N denote the N × N complex and real matrix, C
denote the complex number, and AH denote the conjugate
transpose matrix of A.

II. THE ORTHOGONALIZATION PROJECTION METHOD

Let A ∈ CN×N (or RN×N ). The Arnoldi iteration process
gives a complete unitary reductiion of A to upper-Hessenberg
matrix QHAQ = H or AQ = AH , starting from the condition
that the first column of Q is a prescribed unit vector.

Let Qn be the N ×n matrix whose columns are the first n
columns of Q and let H̃n be the (n+1)×n upper-left section
of H ,

H̃n =

⎡
⎢⎢⎢⎢⎢⎣

h11 h12 · · · h1n
h21 h22 · · · h2n

. . . . . . . . .
hn,n−1 hnn

hn+1,n

⎤
⎥⎥⎥⎥⎥⎦
(n+1)×n

(1)

Then we have
AQn = Qn+1H̃n

The Arnoldi process realizes the orthogonalization Pro-
jection onto the Krylov subspace, which is the modified
Gram-Schmidt process that implements the (n+ 1)× n-term
recurrence relation. We briefly describe the Arnoldi algorithm
as follows.

Algorithm 2.1 The Arnoldi Iteration
1) Start: Choose an initial unit vector v.
2) For i = 1, 2, 3, · · · , do the full orthogonalization process

• w := Avi −
i∑

j=1

hjivj with hji := vHj Avi

• hi+1i := ‖w‖, vi+1 = w/hi+1i

The QnQ
H
n+1 is the n×(n+1) identity, i.e., the n×(n+1)

matrix with 1 on the main diagonal and 0 elsewhere. Therefor,
QH

n Qn+1H̃n is the n × n Hessenberg matrix obtained by
removing the last row of H̃n

Hn =

⎡
⎢⎢⎢⎣
h11 h12 · · · h1n
h21 h22 · · · h2n

. . . . . . . . .
hn,n−1 hnn

⎤
⎥⎥⎥⎦
n×n

Then we can accordingly derive the formula

Hn = QH
n AQn

For sufficiently large n, some of the pseudospectra of A can be
reasonably approximated by the corresponding pseudospectra
of Hn or H̃n

Λε(A) ≈ Λε(Hn) ≈ Λε(H̃n)

For n 	 N , the computation of Λε(Hn) or Λε(H̃n) will
be O((n/N)3) times faster than that of Λε(A). Note that in
considering Λε(H̃n), we are dealing with the ε-pseudospectra
of a rectangular matrix[22].

We are not aware of very satisfactory theorems to justify
the approximation Λε(A) ≈ Λε(Hn). However, there are the
follwoing results[5].

Theorem 2.1 Let an N ×N matrix A be unitary similar to
a Hessenberg matrix H , and let H̃n denote the (n + 1) × n
section (1) . Then for any z we have

σmin(zI−H̃1) ≥ σmin(zI−H̃2) ≥ σmin(zI−H̃3) ≥ · · · ≥ σmin(A)
(2)
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and, consequently, for any ε ≥ 0

Λε(H̃1) ⊆ Λε(H̃2) ⊆ Λε(H̃3) ⊆ · · · ⊆ Λε(A) (3)

Note that in Theorem 2.1, there is no Ritz values. Just like
eigenvalue problems, we can give a the definition of Ritz
values as the points z at which σmin(zI−Hn) achieves a local
minimum (namely, zero). And analogue for the rectangular
case would be to consider the points at which σmin(zI− H̃n)
achieves a local minimum. It follows from (2) that this
minimum value will be equal to zero if and only if z is an
eigenvalue of A corresponding to an eigenvector that lies in
the Krylov subspace.

Besides pseudospectra, it is well known that the Arnoldi
iteration also may provide estimates of the numerical range
(namely, field of values)[7] of A, which is denoted by W (A) =
{xHAx : ‖x‖ = 1}. Now it is Hn that we most naturally make
use of

W (A) ≈W (Hn)

Theorem 2.2 Let a A and H be as in Theroem 2.1, and
matrix Hn is the n× n matrix produced by Arnoldi iteration.
Then

W (H1) ⊆W (H2) ⊆W (H3) ⊆ · · · ⊆W (A)

We briefly describe the Arnoldi method for pesudospectra
computing as follows.

Algorithm 2.2 The Arnoldi Method for Pseudospectra
1) Compute the Hessenberg matrix by Arnoldi iteration;
2) Compute the pseudospectra of the Hessenberg matrix

using the small dense matrix methods;
3) Use a visualisation tool to display the computed Pseu-

dospectra.

III. THE OBLIQUE PROJECTION METHOD

IOM(q) proposed by Saad is formally similar to Arnoldi’s
method except for a generation of Vn. In it, Avi is only orthog-
onalized against the previous q vectors vi−q+1,· · ·,vi, where
2≤q≤N , so it is less computional cost that Arnoldi iteration.
IOM(q) realizes an oblique projection process over Krylov
subspace and is more attractive, valuable and interesting both
in theory and in practice.

Algorithm 3.1 The IOM(q)(Incomplete Orthogonalization
Method) Iteration

1) Start: Choose the parameter q satisfying 2≤q≤N and
an initial vector v.

2) For i = 1, 2, 3, · · · , do
• the incomplete orthogonalization process:

– i0 := max{1, i− q + 1}
– w := Avi −

i∑
j=i0

hjivj with hji := vHj Avi

– hi+1i := ‖w‖, vi+1 = w/hi+1i

To describe the algorithm we start by noticing that after n
steps of IOM(q) we have an not l2-orthonormal system Vn+1

and a (n+1)×n banded upper-Hessenberg matrix Ĥn whose
only nonzero entries are the elenments hij generated by the
method. Thus Ĥn is the same as Hn generatrd by IOM(q)
except for an additional row whose only nonzero element is
hn+1,n in the (n+ 1,n) position. From the Step 2 of IOM(q)
iteration,

AVn = VnHn + hn+1,nvn+1e
H
n

and
AVn = Vn+1Ĥn

where the banded upper-Hessenberg matrices Hn and Ĥn with
the following form

Hn =

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎦
n×n

Ĥn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

0 . . . . ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n+1)×n

We consider ‖Vn+1‖, where Vn+1 is an N×(n+1) matrix.
Then

‖Vn+1‖ =
√
λmax[V �

n+1Vn+1]

Let Vn+1 = (v1, v2, · · · , vk, vn+1),then V �
n+1 =

(v�1 , v
�
2 , · · · , v�n , v�n+1)

�

Then,

V �
n+1Vn+1 =

⎡
⎢⎢⎢⎢⎢⎣

v�1 v1 v�1 v2 · · · v�1 vn v�1 vn+1

v�2 v1 v�2 v2 · · · v�2 vn v�2 vn+1

...
...

. . .
...

...
v�n v1 v�n v2 · · · v�n vn v�n vn+1

v�n+1v1 v�n+1v2 · · · v�n+1vn v�n+1vn+1

⎤
⎥⎥⎥⎥⎥⎦

which is a (n+1)×(n+1) symmetric matrix.
From the Gerschgorin disk theory, the eigenvalues of

V �
n+1Vn+1 lie in the disks whose centers are 1 and radiuses

are the sum of the modlis of the entries in each line except
for the elements on the diagonal line.

It is easy to prove that

1 ≤ λmax[V
�
n+1Vn+1] ≤ Rmax + 1

where Rmax stands for the biggest radius of the disks.
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Now we analyze the maximal radius of these disks. From
the incomplete orthogonormality

(vi, vj) = δij , |i− j| ≤ q + 1

it also is easy to prove that

‖v�i vj‖ ≤ 1

Then, we have Rmax ≤ n− q. Therefore,

1 ≤ λmax[V
�
n+1Vn+1] ≤ n− q + 1

From the previous analysis, we finally have

1 ≤ ‖Vn+1‖ ≤ √
n− q + 1

which gives a upper bound of ‖Vn+1‖. Especially, if q =
n,then ‖Vn+1‖ = 1 . This is the Arnoldi iteration.

Therefore, for n 	 N , some of the pseudospectra of
A can be reasonably approximated by the corresponding
pseudospectra of Hn or Ĥn

Λε(A) ≈ Λε(Hn) ≈ Λε(Ĥn) (4)

For n 	 n, the computation of Λε(Hn) or Λε(Ĥn) will
be O((n/N)3) times faster than that of Λε(A). Also, the
computation of the IOM iteration is less that that of Arnoldi
iteration, especially when N is very large. Note that in
considering Λε(Ĥn), we are dealing with the ε-pseudospectra
of a rectangular matrix.

We are not aware of very satisfactory theorems to justify
the approximation Λε(A) ≈ Λε(Hn). Also, we have no the
results like Theorem 2.1 and Theorem 2.2, because zI−A and
zI −Hn are not unitarily similar, i.e., they have the different
singular values. However, in fact, the IOM(q) is the Arnoldi
method in the extremely case q = 0. In another word, zI −A
and zI−Hn are approximately unitarily similar. Therefore, we
still can use the IOM(q) to estimate the pseudospectra of the
large matrix approximately in (4) which is very effective when
A is very large banded structured matrix. And the following
numerical experiments in the next section show that it is
more attractive, valuable and interesting both in theory and
in practice.

Algorithm 3.2 The IOM(q) Method for Pseudospectra
1) Compute the banded Hessenberg matrix by IOM(q)

iteration;
2) Compute the pseudospectra of the banded Hessenberg

matrix using the small dense matrix methods;
3) Use a visualisation tool to display the computed pseu-

dospectra.

IV. NUMERICAL EXPERIMENTS

In this section, we apply our results to some matrices
to show their applications in practice. Because of the very
long CPUtime, here we take some moderate (not very large)

matrices which are taken from Gallery Higham test matrices in
MATLAB as examples and we hope to investigate more large
problems in the future. Here, all the computations are finished
with MATLAB 6.5 on PC (Intel(R) Pentium(R), Processor
1500MHz 1.50GHz, Memory 256MB).

In Algorithm 2.2 and Algorithm 3.2, the smaller dense ma-
trix method is the Algorthm 1.2, which is denoted RANDPS.
The maximum number of choosing the random matrix E with
‖E‖ ≤ ε is taken as 100. Note that the smaller dense matrix
method in Algorithm 2.2 and Algorithm 3.2 may also be
chosen as the Grid-SVD method here.

Example 1 Consider the 100×100 (N = 100)Grcar matrix,
a Toeplitz matrix with -1 on the subdiagonal and 1 on the main
diagonal and on the first three superdiagonals. Arnoldi method
approximation at step n = 30, 50, 70 and 90 are plotted. The
axis limits are −2 ≤ Re ≤ 4,−4 ≤ Im ≤ 4.

Table 1 and Figure 1 show the results.

Table 1: The CPUtime comparison

Methods CPUtime
RANDPS 137.5480

Arnoldi(n=30) 12.6680
Arnoldi(n=50) 31.6350
Arnoldi(n=70) 62.0690
Arnoldi(n=90) 97.2340

0 1 2 3
−3

−2

−1

0

1

2

3
n=30

0 1 2 3
−3

−2

−1

0

1

2

3
n=50

0 1 2 3
−3

−2

−1

0

1

2

3
n=70

0 1 2 3
−3

−2

−1

0

1

2

3
n=90

Fig. 1. pseudospectra of the 100× 100 Grcar matrix compared with those
of four Arnoldi approximations (ε=0.01, n = 30, 50, 70 and 90). The upper
half of each plot corresponds to lower-dimensinal projection matrix, and the
lower half to origin matrix A; the axis limits in each case are −0.5 ≤ Re ≤
3,−3 ≤ Im ≤ 3. The red ’×’ are the eigenvalue of A in the whole plane.

Example 2 Consider the 200×200 (N = 200) Toeppen matrix
with 0.5 on the subdiagonal and 1 on the main diagonal and
on the first two superdiagonals. The approximation by Arnoldi
iteration which is denoted ARNRANDPS with n = 100

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:4, No:1, 2010 

72International Scholarly and Scientific Research & Innovation 4(1) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:4
, N

o:
1,

 2
01

0 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/5
84

4.
pd

f



and IOM(q) iteration which is denoted IOMRANDPS with
n = 100, q = 30 and q = 60 are plotted. Figure 2 shows the
results. Obviously, seen from the figure 2, the approximation

−1 0 1 2 3 4
−4

−2

0

2

4
RANDPS:N=200

−1 0 1 2 3 4
−4

−2

0

2

4
ARNRANDPS: n=100

−1 0 1 2 3 4
−4

−2

0

2

4
IOMRANDPS: n=100, q=30

−1 0 1 2 3 4
−4

−2

0

2

4
IOMRANDPS: n=100, q=60

Fig. 2. pseudospectra of the 200×200 Teoplitz matrix compared with those
of Arnoldi approximations (ε=0.001, n = 100) and IOM(q) approximations
(ε=0.001, n = 100, q = 30 and q = 60). The axis limits in each case are
−1 ≤ Re ≤ 4,−4 ≤ Im ≤ 4.

by IOM(q) is better than that by Arnoldi method. The reason
is that the origin Teoplitz matrix is band structured matrix and
the projection matrix by IOM(q) process is also band structure.

V. CONCLUSION AND REMARKS

Perhaps pseudospectra will play a role tool in breaking
down walls between the theorists of functional analysis and the
engineers of scientific computing[1]. To improve the efficiency
of computing pesudospectra, there are two main ways: (1)
The first way to speed up the calculation of pseudospectra is
the simplest: avoid computing singular values in uninteresting
regions of the complex plane, where the resolvent norm is
small and there are no boundaries of the pseudospectra of
interest; (2) The second way to speed up the calculation
of pseudospectra, independent of the first, is to reduce the
dimension of the N × N matrix A by projection onto an
subspace, such as Krylov subspace and invariant subspace of
dimension n < N .

The idea in this paper is the latter. We have proposed a
kind of projection methods for computing pseudospectra of
large matrices. The first way is the version of the Arnoldi
iteration method (an orthogonal projection method) on a low-
dimensional subspace. The second way is the version of
the IOM(q) iteration method (an oblique projection method)
on a low-dimensional subspace. The numerical algorithms
are given. Numerical experiments show that this kind of

methods are powerful and cost effective scheme for computing
pseudospectra of large matrices.

Furthermore, the idea in this paper can be generalized to
the pseudospectra of the rectangular matrices. Also, the idea
in this paper may provide some insights for the pesudospectra
in other norms.
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