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Abstract—A P0-matrix is a real square matrix all of whose
principle minors are nonnegative. In this paper, we consider the
class of P0-matrix. Our main aim is to determine which sign pattern
matrices are admissible for this class of real matrices.
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I. INTRODUCTION

A
N n × n sign pattern A is a matrix whose entries are

from {+, −, 0}. The sign of a given number a, denoted

by sign (a) is +, −, or 0 depending on a > 0, a < 0 or a = 0.

Denote by Qn the set of all n × n sign pattern matrices. For

a real matrix B, sign (B) is the sign pattern matrix obtained

by replacing each entry with its sign. If A ∈ Qn, then the

qualitative class of A is defined by

Q(A) = {B : sign(B) = A} .

If P is a property referring to a realmatrix, then a sign

pattern A requires P if every realmatrix in Q(A) has property

P , or allows P if some real matrix in Q(A) has property P .

In the literature, one can find, recently, an increasing interest

in problems that arise from the basic question of whether

a certain sign pattern matrix requires (or allows) a certain

property (see, for instance, [2, 6-9]).

For an n × n matrix A, A[α|β] denotes the submatrix of

A containing rows numbered by α and columns numbered

by β where α, β ⊆ {1, 2, · · · , n}. When α = β, A[α|α] is

abbreviated as A[α]. Therefore, a real n × n matrix A is a

P0-matrix if det A[α] > 0, for all α ⊆ {1, 2, · · · , n}.

In [8], the authors characterized the sign pattern matrices

that admit N -matrices, P -matrices and M -matrices. In [9],

the authors characterized the sign pattern matrices that admit

P0-matrix. Recall that an n × n real matrix A is called an

N -matrix if all of its principal minors are negative while A is

said to be a P -matrix if all of its principal minors are positive.

If Zn is the set of all square real matrices of order n whose

off-diagonal entries are non-positive, then a matrix A ∈ Zn is

an M -matrix if and only if A is a P -matrix. A nonsingular

matrix A is said to be an inverse M -matrix if A−1 is an M -

matrix. See [1, 5] for more information on these classes of

matrices. A P0-matrix is a real square matrix all of whose

principle minors are nonnegative.

In this paper, we will consider the class of P0-matrix. Our

main aim is to determine which sign pattern matrices are

admissible for this class of real matrices.
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II. NOTATION AND PRELIMINARIES

A sign pattern matrix A = (aij) is said to be combinatori-

ally symmetric is aij 6= 0 if and only if aji 6= 0 for all choices

of i, j, i 6= j, and not combinatorially symmetric otherwise.

A permutation pattern is a square sign pattern matrix with

entries 0 and +, where the entry + occurs precisely once in

each row and in each column. A permutational similarity of

the (square) sign pattern A is a product of the form PT AP ,

where P is permutation pattern.

Let A = (aij) be an n×n sign pattern matrix. The digraph

of A, denoted D(A), is the digraph with vertex set {1, · · · , n},

such that there is an arc (i, j) from i to j if and only if ai,j 6= 0.

Let E(D(A)) and V (D(A)) denote the arc set and vertex

set of the digraph D(A), respectively. By a path W = x →
y (a path from x to y) in digraph D, we mean a sequence

of vertices x, v1, · · · , vl, y ∈ V (D) and a sequence of arcs

(x, v1), (v1, v2), · · · , (vl, y) ∈ E(D) where the vertices and

arcs are distinct.

In this study, we will use directed graphs, but in the case of

combinatorially symmetric sign pattern matrices we will treat

the graphs as undirected for convenient.

A simple cycle of length k (or a k-cycle) in the digraph

D(A) is a sequence of arcs of the form C = (i1, i2), (i2, i3),
· · · , (ik, i1), where the set {i1, · · · , ik} contains no repeated

vertices. The simple cycle C = (i1, i2), (i2, i3), · · · , (ik, i1) in

D(A) can also be defined as a formal product of the form C =
ai1i2ai2i3 · · · aiki1 . The sign (positive or negative) of a simple

cycle in a sign pattern A is the actual product of the entries

in the cycle, following the obvious rules that multiplication is

commutative and associative, and (+)(+) = +, (+)(−) = −.

A composite cycle C in A is a product of simple cycles,

say C = C1C2 · · ·Cm where the index sets of the Ci’s are

mutually disjoint. If the length of Ci is li, then the length of

C is
m∑

i=1

li and the sign of C is (−1)
m∑

i=1

(li−1)
. From now on,

the term cycle always refers to a composite cycle (which as a

special case could be a simple cycle). The weight of a cycle

C of length k in D(A), is defined as the product of the entries

in C. The signed weight of a cycle C in D(A), denoted by

w(C), is defined as the product of its sign and its weight.

III. MAIN RESULTS

Definition 3.1. We say that a sign pattern matrix A = (aij)
has the 2-cycle property if aijaji < 0, whenever (i, j, (j, i) ∈
E(G), where G is the graph describing P .

In this section we first give another proof of the theorem

3.2 of [9], which we think is simpler.

Theorem 3.2. Let A = (aij) be an n × n sign pattern

matrix, with aii = 0 for all i, whose associated graph D(A)
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is an undirected cycle. There exists a P0-matrix in Q(A) if and

only if A has the 2-cycle property and the entry according to

the loop is positive.

Proof. The necessary condition is obvious. Conversely,

assume that A has the 2-cycle property. We can assume, by

permutation similarity, that A is of the following form

A =




0 a12 0 · · · 0 a1n

a21 0 a23 · · · 0 0
0 a23 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 an−1,n

an,1 0 0 · · · an,n−1 0




(1)

Consider B ∈ Q(A) of the form

B =




0 b12 0 · · · 0 b1n

b21 0 b23 · · · 0 0
0 b23 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 bn−1,n

bn,1 0 0 · · · bn,n−1 0




(2)

As a cycle of length k in the digraph D(B) corresponds to

a term in the determinant of the k × k principal submatrix

associated with the vertices of the cycle, we only have to

consider the cycles in the digraph D(B).
In the digraph D(B), there are n 2-cycles, Ci = bii+1bi+1i

for i = 1, 2, · · · , n − 1 and Cn = bn1b1n and 2 n-cycles

C
′

= b12b23 · · · bn−1nbn1 and C
′′

= b1nbnn−1 · · · b21.

Let α ⊂ {1, 2, · · · , n}. Assume that |bii+1| = |bi+1i| =
|bn1| = |b1n| = 1 where i = 1, 2, · · · , n − 1. Then, we show

that det B ≥ 0 and det B[α] ≥ 0. Since A has the 2-cycle

property, we have that w(Ci) = 1 for i = 1, 2, · · · , n. First,

we show that det B ≥ 0. Now we consider the the following

two cases.

Case 1. When n is even:

If n = 2, it is clear. If n ≥ 4, then there are 2 n-cycles

C
′

and C
′′

and 2 composite cycles C∗ = C1C3 · · ·Cn−1 and

C∗∗ = C2C4 · · ·Cn of lengths n. Since w(Ci) = 1, we have

that w(C
′

)w(C
′′

) = 1 and w(C∗) = w(C∗∗) = 1.

It follows that w(C
′

) + w(C
′′

) ≥ −2. Therefore,

det B = w(C∗) + w(C∗∗) + w(C
′

) + w(C
′′

) ≥ 0.

Case 2. When n is odd:

If n is odd, then there are only two n-cycles C
′

and C
′′

.

Since the w(C
′′

)w(C
′′

) = −1 and |w(C
′′

)| = |w(C
′′

)| = 1,

we have det B = 0. If |α| is even and there exists no cycle

of length whose vertex set equals to α, then det B[α] = 0.

Next we show that det B[α] ≥ 0. Since there exists no odd

cycle in the digraph D(B), if |α| is odd, then det B[α] = 0.

If |α| is even and there exists no cycle of length whose vertex

set equals to α, then det B[α] = 0. If |α| is even and there

exists m1 ≥ 1 composite cycles of length |α| whose vertex

set equals to α. Each cycle of these m1 composite cycles is

a product 2-cycles. Since w(Ci) = 1, det B[α] ≥ 1. ¤

Theorem 3.3. Let A = (aij) be an n×n sign pattern matrix.

The associated graph D(A) is an undirected cycle with only

one loop. There exists a P0-matrix in Q(A) if and only if A

has the 2-cycle property and the sign of the loop is positive.

Proof. The necessary condition is obvious. Conversely,

assume that A has the 2-cycle property. We can assume, by

permutation similarity, that A is of the following form

A =




a11 a12 0 · · · 0 a1n

a21 0 a23 · · · 0 0
0 a23 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 an−1,n

an,1 0 0 · · · an,n−1 0




(3)

Consider B ∈ Q(A) of the form

B =




b11 b12 0 · · · 0 b1n

b21 0 b23 · · · 0 0
0 b23 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 bn−1,n

bn,1 0 0 · · · bn,n−1 0




(4)

In the digraph D(B), there are n 2-cycles, Ci = bii+1bi+1i

for i = 1, 2, · · · , n − 1 and Cn = bn1b1n and 2 n-cycles

C
′

= b12b23 · · · bn−1nbn1 and C
′′

= b1nbnn−1 · · · b21 and a

loop b11.

Assume that |bii+1| = |bi+1i| = |bn1| = |b1n| = b11 = 1
where i = 1, 2, · · · , n−1. Then, we show that det B ≥ 0 and

det B[α] ≥ 0. Since A has the 2-cycle property, we have that

w(Ci) = 1 where i = 1, 2, · · · , n.

First, we show that det B ≥ 0. Now we consider the

following two cases.

Case 1. When n is even:

If n = 2, it is clear. If n ≥ 4, then there are 2 n-

cycles C
′

, C
′

and 2 composite C∗ = C1C3 · · ·Cn−1 and

C∗∗ = C2C4 · · ·Cn of lengths n. Since w(Ci) = 1, we have

that w(C∗) = w(C∗∗) = 1 and w(C
′

)w(C
′′

) = 1.

It follows that w(C
′

) + w(C
′′

≥ −2. Therefore,

det B = w(C
′

) + w(C
′′

+ w(C∗) + w(C∗∗) ≥ 0.

Case 2. When n is odd:

In this case, there are 2 n-cycles C
′

and C
′′

and one

composite C
′′′

= b11C2C4 · · ·Cn−1. Since w(Ci) = 1,

we have w(C
′′′

) = 1 and w(C
′

) + w(C
′′

) = 0. Hence,

det B[α] = w(C
′′′

) + w(C
′

) + w(C
′′

) = 1.

Next we show that det B[α] ≥ 0. If |α| is even and there

exists no cycle of length |α| whose vertex set equals to α, then

det B[α] = 0. If |α| is even and there exists at least one cycle

of length |α| whose vertex set equals to |α|, since each even

composite cycle of length α is a product of some 2-cycles, we

have that det B[α] ≥ 1.

If |α| is odd, every cycle of length |α| is a product of

the loop b11 and 2-cycles. If there exits no cycle of length

|α| whose vertex set equals to α, then det B[α] = 0. If

there exists at least one cycle of length |α| whose vertex
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set equals to α, since each odd composite cycle of length

|α| is a product of the loop b11 and 2-cycles, we have that

det B[α] ≥ 1.

Theorem 3.4. Let A = (aij) be an n×n sign pattern matrix.

The associated graph D(A) is an undirected cycle with only

two loops whose signs are positive. Denote the vertices of the

two loops by i0 and j0. For convenience, assume that i0 > j0.

(1) If i0 and j0 are consecutive (For convenience, we say n

and 1 are consecutive), then there exists a P0-matrix in Q(A)
if and only if the weights of the 2-cycles whose vertices in

{1, 2, · · · , n} \ {i0, j0} are negative and ai0i0 = aj0j0 = +.

(2) If i0 and j0 are not consecutive, then there exists a

P0-matrix in Q(A) if and only if A has the 2-cycle property

and ai0i0 = aj0j0 = +.

Proof. Let Ci = bii+1bi+1i for i = 1, 2, · · · , n − 1
and Cn = bn1b1n. Let C

′′

= b12b23 · · · bn−1nbn1 and

C
′

= b1nbnn−1 · · · b32b21. Let α ⊂ {1, 2, · · · , n}.

(1) If i0 and j0 are consecutive.

The necessary condition is obvious. Conversely, assume that

the weights of the 2-cycles whose vertices in {1, 2, · · · , n} \
{i0, j0} are negative and ai0i0 = aj0j0 = +. We can assume,

by permutation similarity, that A is of the following form

A =




a11 a12 0 · · · 0 a1n

a21 a22 a23 · · · 0 0
0 a23 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 an−1,n

an,1 0 0 · · · an,n−1 0




(5)

Consider B ∈ Q(A) of the form

B =




b11 b12 0 · · · 0 b1n

b21 b22 b23 · · · 0 0
0 b23 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 bn−1,n

bn,1 0 0 · · · bn,n−1 0




(6)

Assume that |bii+1| = |bi+1i| = |bn1| = |b1n| = 1 and

b11 = b22 = 2 where i = 1, 2, · · · , n − 1. Since the weights

of the 2-cycles whose vertices in {2, 3, · · · , n} are negative,

we have that w(Ci) = 1 for i = 2, 3, · · · , n.

First, we show that B[α] ≥ 0. All the even cycles whose

lengths |α| are products of 2-cycles or products of the two

loops and 2-cycles.

If |α| is even and there exists no cycle of length |α| whose

vertex set equals to α, then det B[α] = 0. Next we consider

the case that |α| is even and there exists at least one cycle of

length |α| whose vertex set equals to α. If {1, 2} ⊆ α, then

det B[α] ≥ 3, if {1, 2} * α then det B[α] ≥ 1.

If |α| is odd, every cycle of length |α| is a product of a loop

and some 2-cycles. If there exists no cycle of length |α| whose

vertex set equals to α, then det B[α] = 0. If there exists at

least one cycle of length |α| whose vertex set equals to α,

then det B[α] ≥ 1.

Next, we show that det B ≥ 0. Now we consider the the

following two cases.

Case 1. When n is even

If n = 2, it is clear. If n ≥ 4, then there are 4

cycles C
′

, C
′′

, b11b22C3C5 · · ·Cn−1, C1C3 · · ·Cn−1 and

C2C4 · · ·Cn of lengths n. Since the w(C
′

)w(C
′′

) = 1
and |w(C

′

)| = |w(C
′′

)| = 1, we have that

w(C
′

) + w(C
′′

) ≥ −2, As w(b11b22C3C5 · · ·Cn−1) = 4,

|w(C1C3 · · ·Cn−1)| = 1 and w(C2C4 · · ·Cn) = 1, we have

that det B = w(C
′

) + w(C
′′

) + w(b11b22C3C5 · · ·Cn−1) +
w(C1C3 · · ·Cn−1) + w(C2C4 · · ·Cn) ≥ 2.

Case 2. When n is odd

There are 4 cycles C
′

, C
′′

, b11C2C4 · · ·Cn−1 and

b22C3C5 · · ·Cn of lengths n. Since the w(C
′

)w(C
′′

) = −1
and |w(C

′

)| = |w(C
′′

)| = 1, we have that

w(C
′

) + w(C
′′

) = 0, As |w(b11C2C4 · · ·Cn−1)| ≥ −2,

w(b22C3C5 · · ·Cn) = 2, we have that det B = w(C
′

) +
w(C

′′

) + w(b11C2C4 · · ·Cn−1) + w(b22C3 · · ·Cn) ≥ 0.

(1) If i0 and j0 are not consecutive.

The necessary condition is obvious. Conversely, assume that

if A has the 2-cycle property and ai0i0 = aj0j0 = +. We can

assume, by permutation similarity, that A is of the following

form

A =




a11 a12 0 · · · 0 a1n

a21 0 a23 · · · 0 0
0 a23 a33 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 an−1,n

an,1 0 0 · · · an,n−1 0




(7)

Consider B ∈ Q(A) of the form

B =




b11 b12 0 · · · 0 b1n

b21 0 b23 · · · 0 0
0 b23 b33 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 bn−1,n

bn,1 0 0 · · · bn,n−1 0




(8)

In the digraph D(B), there are n 2-cycles, Ci for i =
1, 2, · · · , n and 2 n-cycles C

′

and C
′′

and two loops b11 and

b33.

Assume that |bii+1| = |bi+1i| = |bn1| = |b1n| = b11 =
b33 = 1 where i = 1, 2, · · · , n − 1. Since A has the 2-cycle

property, we have that w(Ci) = 1, where i = 1, 2, · · · , n.

First, we show that B[α] ≥ 0. All the even cycles whose

lengths |α| are products of 2-cycles or products of the two

loops and 2-cycles.

If |α| is odd, every cycle of length |α| is a product of a loop

and some 2-cycles. If there exists no cycle of length |α| whose

vertex set equals to α, then det B[α] = 0. If there exists at
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least one cycle of length |α| whose vertex set equals to α,

then det B[α] ≥ 1.

Next, we show that det B ≥ 0. Now we consider the the

following two cases.

Case 1. When n is even:

If n = 2, it is clear. If n ≥ 4, Let C∗∗

1 = C1C3 · · ·Cn−1

and C∗∗

2 = C2C4 · · ·Cn. There are 2 composite

cycles C∗∗

1 and C∗∗

2 of lengths n and 2 n-cycles C
′

and C
′′

. Since w(Ci) = 1, w(C
′′

)w(C
′′

) = 1 and

w(C∗∗

1 ) = w(C∗∗

2 ) = 1. It follows that w(C
′′

)+w(C
′′

) ≥ −2.

Hence det B[α] = w(C
′′

)+w(C
′′

)+w(C∗∗

1 )+w(C∗∗

2 ) ≥ 0.

Case 2. When n is odd:

In this case, there are 2 composite cycles

C∗ = b11C2C4 · · ·Cn−1 and C∗∗ = b33C1C4C6 · · ·Cn−1

of lengths n and 2 n-cycles C
′

and C
′′

. Since

w(Ci) = −1, we have w(C∗) = w(C∗∗) = 1 and

w(C
′

)w(C
′′

) = −1. It follows that w(C
′

) + w(C
′′

) = 0.

Hence, det B[α] = w(C∗)+w(C∗∗)+w(C
′

)+w(C
′′

) = 2. ¤

Let Ds,n denote the digraph consisting of a Hamilton

cycle Dn = 1 → 2 → · · · → n − 1 → n → 1 and a cycle

Cs = 1 → 2 → · · · → s − 1 → s → 1 of length s. ¤

Theorem 3.5. Let A = (aij) be an n×n sign pattern matrix,

with aii = 0 for all i, whose associated graph D(A) is a the

digraph Ds,n. Then the following statements are equivalent:

1. The signs of the cycles Dn and Ds are (−1)n+1

and (−1)s+1, respectively.

2. There exists a P0−matrix in Q(A).
3. All matrices in Q(A) are P0−matrices.

Proof. Without loss of generality, we may assume that any
matrix B ∈ Q(A) is of the form

B =


















0 b12 0 · · · 0 0 0 · · · 0

0 0 b23 · · · 0 0 0 · · · 0

...
...

...
...

...
...

...
0 0 0 · · · bs−1s 0 0 · · · 0

bs1 0 0 · · · 0 bss+1 0 · · · 0

0 0 0 · · · 0 0 bs+1s+2 · · · 0

...
...

...
...

...
...

...
...

0 0 0 · · · 0 0 · · · 0 bn−1n

bn1 0 · · · 0 0 0 · · · 0


















.

(9)

We have that det B = (−1)n+1a12a23 · · · an−1nan1. Let

α ⊂ {1, 2, · · · , n}. Since there are only 2 cycles Cs and

Cn, for any α 6= {1, 2, · · · , s}, det B[α] = 0 and for any

α = {1, 2, · · · , s}, det B[α] = (−1)s+1a12a23 · · · as−1sas1.

This implies A is a P0-matrix if and only if the signs of the

cycles Ds and Dn are (−1)s+1 and (−1)n+1, respectively.¤
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