Minimization Problems for Generalized Reflexive and Generalized Anti-Reflexive Matrices
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Minimization Problems for Generalized Reflexive and Generalized Anti-Reflexive Matrices

Authors: Yongxin Yuan

Abstract:

Let R ∈ Cm×m and S ∈ Cn×n be nontrivial unitary involutions, i.e., RH = R = R−1 = ±Im and SH = S = S−1 = ±In. A ∈ Cm×n is said to be a generalized reflexive (anti-reflexive) matrix if RAS = A (RAS = −A). Let ρ be the set of m × n generalized reflexive (anti-reflexive) matrices. Given X ∈ Cn×p, Z ∈ Cm×p, Y ∈ Cm×q and W ∈ Cn×q, we characterize the matrices A in ρ that minimize AX−Z2+Y HA−WH2, and, given an arbitrary A˜ ∈ Cm×n, we find a unique matrix among the minimizers of AX − Z2 + Y HA − WH2 in ρ that minimizes A − A˜. We also obtain sufficient and necessary conditions for existence of A ∈ ρ such that AX = Z, Y HA = WH, and characterize the set of all such matrices A if the conditions are satisfied. These results are applied to solve a class of left and right inverse eigenproblems for generalized reflexive (anti-reflexive) matrices.

Keywords: approximation, generalized reflexive matrix, generalized anti-reflexive matrix, inverse eigenvalue problem.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1088354

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119

References:


[1] A. L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl., 7 (1973): 151–162.
[2] A. L. Andrew, Solution of equations involving centrosymmetric matrices, Technometrics, 15(1973), pp. 405–407.
[3] J. P. Aubin, Applied Functional Analysis, John Weiley, New York, 1979.
[4] Z. -J. Bai, R. H. Chan, Inverse eigenproblem for centrosymmetric and centroskew matrices and their approximation, Theoretical Computer Science, 315 (2004): 309–318.
[5] A. W. Bojanczyk, A. Lutoborski, The procrustes problem for orthogonal stiefel matrices, SIAM J. Sci. Comput., 21 (1999): 1291–1304.
[6] A. W. Bojanczyk, A. Lutoborski, The procrustes problem for orthogonal Kronecker products, SIAM J. Sci. Comput., 25 (2003): 148–163.
[7] A. Cantoni, P. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl., 13 (1976): 275–288.
[8] H. C. Chen, The SAS domain decomposition method for structural analysis, CSRD Tech. report 754, Center for Supercomputing Research and Development, University of Illinois, Urbana, IL, 1988.
[9] H. C. Chen, Generalized reflexive matrices: special properties and applications, SIAM J. Matrix Anal. Appl., 19 (1998): 140–153.
[10] W. Chen, X. Wang, T. Zhong, The structure of weighting coefficient matrices of harmonic differential quadrature and its application, Comm. Numer. Methods Eng., 12 (1996): 455–460.
[11] M. T. Chu, Inverse eigenvalue problems, SIAM Rev., 40 (1998): 1–39.
[12] M. T. Chu, G. H. Golub, Inverse Eigenvalue Problems, Theory, Algorithms and Applications, Oxford University Press, 2005.
[13] L. Datta, S. Morgera, On the reducibility of centrosymmetric matrices– applications in engineering problems, Ciruits Systems Signal Process, 8 (1989): 71–96.
[14] J. Delmas, On adaptive EVD asymtotic distribution of centro-symmetric covariance matrices, IEEE Trans. Signal Process., 47 (1999): 1402– 1406.
[15] I. J. Good, The inverse of a centrosymmetric matrix, Technometrics, 12 (1970): 925–928.
[16] N. J. Higham, The symmetric procrustes peoblem, BIT, 28 (1988): 133– 143.
[17] A. Marina, H. Daniel, M. Volker, C. Hans, The recursive inverse eigenvalue problem, SIAM J. Matrix Anal. Appl., 22 (2000): 392–412.
[18] Z.-Y. Peng, X.-Y. Hu, The reflexive and anti-reflexive solutions of the matrix equation AX = B, Linear Algebra Appl., 375 (2003): 147–155.
[19] W. C. Pye, T. L. Boullino, and T. A. Atchison, The pseudoinverse of a centrosymmetric matrix, Linear Algebra Appl., 6 (1973): 201–204.
[20] D. Tao, M. Yasuda, A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skewcentrosymmetric matrices, SIAM J. Matrix Anal., 23 (2002): 885–895.
[21] W. F. Trench, Hermitian R-symmetri, and hermitian R-skew symmetric procrustes problems, Linear Algebra Appl., 387 (2004): 83–98.
[22] W. F. Trench, Inverse eigenproblems and associated approximation problems for matrices with generalized symmetry or skew symmetry, Linear Algebra Appl., 380 (2004): 199–211
[23] W. F. Trench, Minimization problems for (R, S)-symmetric and (R, S)- skew symmetric matrices, Linear Algebra Appl., 389 (2004): 23–31.
[24] N. T. Trendafilov, R. A. Lippert, The multimode procrustes problem, Linear Algebra Appl., 349 (2002): 245–264.
[25] J. R. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, eigenvectors, Amer. Math. Monthly, 92 (1985): 711–717.
[26] M. Yasuda, Spectral characterizations for Hermitian centrosymmetric K-matrices and Hermitian skew-centrosymmetric K-matrices, SIAM J. Matrix Anal., 25 (2003): 601–605.
[27] F.-Z. Zhou, The solvability conditions for the inverse eigenvalue problems of reflexive matrices, J. Comput. Applied Math., 188 (2006): 180– 189
[28] F.-Z. Zhou, L. Zhang, X.-Y. Hu, Least-squares solution for inverse problems of centrosymmetric matrices, Comput. Math. Appl., 45 (2003): 1581–1589.
[29] S. Q. Zhou, H. Dai, The Algebraic Inverse Eigenvalue Problem, Henan Science and Technology Press, Zhengzhou, 1991 (in Chinese).