{"title":"Sign Pattern Matrices that Admit P0 Matrices","authors":"Ling Zhang, Ting-Zhu Huang","volume":60,"journal":"International Journal of Mathematical and Computational Sciences","pagesStart":1960,"pagesEnd":1964,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/11775","abstract":"

A P0-matrix is a real square matrix all of whose principle minors are nonnegative. In this paper, we consider the class of P0-matrix. Our main aim is to determine which sign pattern matrices are admissible for this class of real matrices.<\/p>\r\n","references":" A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical\r\nSciences, SIAM, 1994.\r\n M. Fiedler, R. Grone, Characterizations of sign patterns of inversepositive\r\nmatrices, Linear Algebra Appl., 40 (1981) 237-245.\r\n J. Gross, J. Yellen, Graph Theory and its Applications, CRC Press, 1998.\r\n L. Hogben (Ed.), Handbook of Linear Algebra (Discrete Mathematics\r\nand its Applications), Chapman & Hall\/CRC, 2006 (R. Brualdi, A.\r\nGreenbaum, R. Mathias (Associated Ed.).\r\n R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press,\r\nNew York, 1955.\r\n C.R. Johnson, Sign patterns of inverse nonnegative matrices, Linear\r\nAlgebra Appl., 55 (1983) 69-80.\r\n C.R. Johnson, F.T. Leighton, H.A. Robinson, Sign patterns of inversepositive\r\nmatrices, Linear Algebra Appl., 24 (1979) 75-83.\r\n C. Mendes Ara'ujo, Juan R. Torregrosa, Sign pattern matrices that admit\r\nM-, N-, P- or inverse M-matrices, Linear Algebra Appl., 431 (2009) 724-\r\n731.\r\n C. Mendes Ara'ujo, Juan R. Torregrosa,Sign pattern matrices that admit\r\nP0 matrices, Linear Algebra Appl., 435 (2011) 2046-2053.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 60, 2011"}