Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33029
Sign Pattern Matrices that Admit P0 Matrices
Authors: Ling Zhang, Ting-Zhu Huang
Abstract:
A P0-matrix is a real square matrix all of whose principle minors are nonnegative. In this paper, we consider the class of P0-matrix. Our main aim is to determine which sign pattern matrices are admissible for this class of real matrices.
Keywords: Sign pattern matrices, P0 matrices, graph, digraph.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1077916
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206References:
[1] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, 1994.
[2] M. Fiedler, R. Grone, Characterizations of sign patterns of inversepositive matrices, Linear Algebra Appl., 40 (1981) 237-245.
[3] J. Gross, J. Yellen, Graph Theory and its Applications, CRC Press, 1998.
[4] L. Hogben (Ed.), Handbook of Linear Algebra (Discrete Mathematics and its Applications), Chapman & Hall/CRC, 2006 (R. Brualdi, A. Greenbaum, R. Mathias (Associated Ed.).
[5] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1955.
[6] C.R. Johnson, Sign patterns of inverse nonnegative matrices, Linear Algebra Appl., 55 (1983) 69-80.
[7] C.R. Johnson, F.T. Leighton, H.A. Robinson, Sign patterns of inversepositive matrices, Linear Algebra Appl., 24 (1979) 75-83.
[8] C. Mendes Ara'ujo, Juan R. Torregrosa, Sign pattern matrices that admit M-, N-, P- or inverse M-matrices, Linear Algebra Appl., 431 (2009) 724- 731.
[9] C. Mendes Ara'ujo, Juan R. Torregrosa,Sign pattern matrices that admit P0 matrices, Linear Algebra Appl., 435 (2011) 2046-2053.