Search results for: Tomoaki Hashimoto
23 Solutions to Probabilistic Constrained Optimal Control Problems Using Concentration Inequalities
Authors: Tomoaki Hashimoto
Abstract:
Recently, optimal control problems subject to probabilistic constraints have attracted much attention in many research field. Although probabilistic constraints are generally intractable in optimization problems, several methods haven been proposed to deal with probabilistic constraints. In most methods, probabilistic constraints are transformed to deterministic constraints that are tractable in optimization problems. This paper examines a method for transforming probabilistic constraints into deterministic constraints for a class of probabilistic constrained optimal control problems.Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137622 Robust Stabilization of Rotational Motion of Underwater Robots against Parameter Uncertainties
Authors: Riku Hayashida, Tomoaki Hashimoto
Abstract:
This paper provides a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. Underwater robots are expected to be used for various work assignments. The large variety of applications of underwater robots motivates researchers to develop control systems and technologies for underwater robots. Several control methods have been proposed so far for the stabilization of nominal system model of underwater robots with no parameter uncertainty. Parameter uncertainties are considered to be obstacles in implementation of the such nominal control methods for underwater robots. The objective of this study is to establish a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. The effectiveness of the proposed method is verified by numerical simulations.Keywords: Robust control, stabilization method, underwater robot, parameter uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57121 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-time Stochastic Systems
Authors: Tomoaki Hashimoto
Abstract:
Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the effectiveness of the obtained stability condition.Keywords: Computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184620 Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution
Authors: Tomoaki Hashimoto
Abstract:
In recent decades, probabilistic constrained optimal control problems have attracted much attention in many research fields. Although probabilistic constraints are generally intractable in an optimization problem, several tractable methods haven been proposed to handle probabilistic constraints. In most methods, probabilistic constraints are reduced to deterministic constraints that are tractable in an optimization problem. However, there is a gap between the transformed deterministic constraints in case of known and unknown probability distribution. This paper examines the conservativeness of probabilistic constrained optimization method for unknown probability distribution. The objective of this paper is to provide a quantitative assessment of the conservatism for tractable constraints in probabilistic constrained optimization with unknown probability distribution.Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193219 Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Recently, crystal growth technologies have made progress by the requirement for the high quality of crystal materials. To control the crystal growth dynamics actively by external forces is useuful for reducing composition non-uniformity. In this study, a control method based on model predictive control using thermal inputs is proposed for crystal growth dynamics of semiconductor materials. The control system of crystal growth dynamics considered here is governed by the continuity, momentum, energy, and mass transport equations. To establish the control method for such thermal fluid systems, we adopt model predictive control known as a kind of optimal feedback control in which the control performance over a finite future is optimized with a performance index that has a moving initial time and terminal time. The objective of this study is to establish a model predictive control method for crystal growth dynamics of semiconductor materials.Keywords: Model predictive control, optimal control, crystal growth, process control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82918 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics
Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen
Abstract:
This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.Keywords: State estimation, control systems, observer systems, unscented Kalman filter, nonlinear vehicle dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61417 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation
Authors: Tomoaki Hashimoto
Abstract:
Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances.Keywords: Optimal control, stochastic systems, quantum systems, stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 236016 Stabilization of Rotational Motion of Spacecrafts Using Quantized Two Torque Inputs Based on Random Dither
Authors: Yusuke Kuramitsu, Tomoaki Hashimoto, Hirokazu Tahara
Abstract:
The control problem of underactuated spacecrafts has attracted a considerable amount of interest. The control method for a spacecraft equipped with less than three control torques is useful when one of the three control torques had failed. On the other hand, the quantized control of systems is one of the important research topics in recent years. The random dither quantization method that transforms a given continuous signal to a discrete signal by adding artificial random noise to the continuous signal before quantization has also attracted a considerable amount of interest. The objective of this study is to develop the control method based on random dither quantization method for stabilizing the rotational motion of a rigid spacecraft with two control inputs. In this paper, the effectiveness of random dither quantization control method for the stabilization of rotational motion of spacecrafts with two torque inputs is verified by numerical simulations.Keywords: Spacecraft control, quantized control, nonlinear control, random dither method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70815 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Tomoaki Hashimoto
Abstract:
Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints, random dither quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115714 Analysis of Sonogram Images of Thyroid Gland Based on Wavelet Transform
Authors: M. Bastanfard, B. Jalaeian, S. Jafari
Abstract:
Sonogram images of normal and lymphocyte thyroid tissues have considerable overlap which makes it difficult to interpret and distinguish. Classification from sonogram images of thyroid gland is tackled in semiautomatic way. While making manual diagnosis from images, some relevant information need not to be recognized by human visual system. Quantitative image analysis could be helpful to manual diagnostic process so far done by physician. Two classes are considered: normal tissue and chronic lymphocyte thyroid (Hashimoto's Thyroid). Data structure is analyzed using K-nearest-neighbors classification. This paper is mentioned that unlike the wavelet sub bands' energy, histograms and Haralick features are not appropriate to distinguish between normal tissue and Hashimoto's thyroid.Keywords: Sonogram, thyroid, Haralick feature, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132313 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.Keywords: Model predictive control, unscented Kalman filter, nonlinear systems, implicit systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94812 Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Taiki Baba, Tomoaki Hashimoto
Abstract:
The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization.Keywords: Model predictive control, stochastic systems, probabilistic constraints, random dither quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 102411 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.Keywords: State estimation, fluid systems, observer systems, unscented Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74310 A New Approach to the Approximate Solutions of Hamilton-Jacobi Equations
Authors: Joe Imae, Kenjiro Shinagawa, Tomoaki Kobayashi, Guisheng Zhai
Abstract:
We propose a new approach on how to obtain the approximate solutions of Hamilton-Jacobi (HJ) equations. The process of the approximation consists of two steps. The first step is to transform the HJ equations into the virtual time based HJ equations (VT-HJ) by introducing a new idea of ‘virtual-time’. The second step is to construct the approximate solutions of the HJ equations through a computationally iterative procedure based on the VT-HJ equations. It should be noted that the approximate feedback solutions evolve by themselves as the virtual-time goes by. Finally, we demonstrate the effectiveness of our approximation approach by means of simulations with linear and nonlinear control problems.
Keywords: Nonlinear Control, Optimal Control, Hamilton-Jacobi Equation, Virtual-Time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15129 Frequency- and Content-Based Tag Cloud Font Distribution Algorithm
Authors: Ágnes Bogárdi-Mészöly, Takeshi Hashimoto, Shohei Yokoyama, Hiroshi Ishikawa
Abstract:
The spread of Web 2.0 has caused user-generated content explosion. Users can tag resources to describe and organize them. Tag clouds provide rough impression of relative importance of each tag within overall cloud in order to facilitate browsing among numerous tags and resources. The goal of our paper is to enrich visualization of tag clouds. A font distribution algorithm has been proposed to calculate a novel metric based on frequency and content, and to classify among classes from this metric based on power law distribution and percentages. The suggested algorithm has been validated and verified on the tag cloud of a real-world thesis portal.
Keywords: Tag cloud, font distribution algorithm, frequency-based, content-based, power law.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20938 On Phase Based Stereo Matching and Its Related Issues
Authors: Andr´as R¨ovid, Takeshi Hashimoto
Abstract:
The paper focuses on the problem of the point correspondence matching in stereo images. The proposed matching algorithm is based on the combination of simpler methods such as normalized sum of squared differences (NSSD) and a more complex phase correlation based approach, by considering the noise and other factors, as well. The speed of NSSD and the preciseness of the phase correlation together yield an efficient approach to find the best candidate point with sub-pixel accuracy in stereo image pairs. The task of the NSSD in this case is to approach the candidate pixel roughly. Afterwards the location of the candidate is refined by an enhanced phase correlation based method which in contrast to the NSSD has to run only once for each selected pixel.
Keywords: Stereo matching, Sub-pixel accuracy, phase correlation, SVD, NSSD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18637 Influence of Type of Burner on NOx Emission Characteristics from Combustion of Palm Methyl Ester
Authors: Nozomu Hashimoto, Hiroyuki Nishida, Yasushi Ozawa, Tetsushiro Iwatsubo, Jun Inumaru
Abstract:
Palm methyl ester (PME) is one of the alternative biomass fuels to liquid fossil fuels. To investigate the combustion characteristics of PME as an alternative fuel for gas turbines, combustion experiments using two types of burners under atmospheric pressure were performed. One of the burners has a configuration making strong non-premixed flame, whereas the other has a configuration promoting prevaporization of fuel droplets. The results show that the NOx emissions can be reduced by employing the latter burner without accumulation of soot when PME is used as a fuel. A burner configuration promoting prevaporzation of fuel droplets is recommended for PME.Keywords: Palm methyl ester (PME), biodiesel fuel, gas turbine, spray combustion, NOx emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19046 3-D Visualization and Optimization for SISO Linear Systems Using Parametrization of Two-Stage Compensator Design
Authors: Kazuyoshi Mori, Keisuke Hashimoto
Abstract:
In this paper, we consider the two-stage compensator designs of SISO plants. As an investigation of the characteristics of the two-stage compensator designs, which is not well investigated yet, of SISO plants, we implement three dimensional visualization systems of output signals and optimization system for SISO plants by the parametrization of stabilizing controllers based on the two-stage compensator design. The system runs on Mathematica by using “Three Dimensional Surface Plots,” so that the visualization can be interactively manipulated by users. In this paper, we use the discrete-time LTI system model. Even so, our approach is the factorization approach, so that the result can be applied to many linear models.Keywords: Linear systems, visualization, optimization, two-Stage compensator design, Mathematica.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11935 Extension and Evaluation of Interface “2D-RIB“ for Impression-Based Retrieval
Authors: S. Kikuchi, Y. Hashimoto, T. Takayama, T. Ikeda, Y. Murata
Abstract:
Recently, lots of researchers are attracted to retrieving multimedia database by using some impression words and their values. Ikezoe-s research is one of the representatives and uses eight pairs of opposite impression words. We had modified its retrieval interface and proposed '2D-RIB'. In '2D-RIB', after a retrieval person selects a single basic music, the system visually shows some other music around the basic one along relative position. He/she can select one of them fitting to his/her intention, as a retrieval result. The purpose of this paper is to improve his/her satisfaction level to the retrieval result in 2D-RIB. One of our extensions is to define and introduce the following two measures: 'melody goodness' and 'general acceptance'. We implement them in different five combinations. According to an evaluation experiment, both of these two measures can contribute to the improvement. Another extension is three types of customization. We have implemented them and clarified which customization is effective.Keywords: Multimedia database, impression-based retrieval, interface, satisfaction level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12994 Size Dependence of 1D Superconductivity in NbN Nanowires on Suspended Carbon Nanotubes
Authors: T. Hashimoto, N. Miki, H. Maki
Abstract:
We report the size dependence of 1D superconductivity in ultrathin (10-130 nm) nanowires produced by coating suspended carbon nanotubes with a superconducting NbN thin film. The resistance-temperature characteristic curves for samples with ≧25 nm wire width show the superconducting transition. On the other hand, for the samples with 10-nm width, the superconducting transition is not exhibited owing to the quantum size effect. The differential resistance vs. current density characteristic curves show some peak, indicating that Josephson junctions are formed in nanowires. The presence of the Josephson junctions is well explained by the measurement of the magnetic field dependence of the critical current. These understanding allow for the further expansion of the potential application of NbN, which is utilized for single photon detectors and so on.
Keywords: NbN nanowire, carbon nanotube, quantum size effect, Josephson junction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20553 Extended “2D-RIB“ for Impression-Based Satisfactory Retrieval and its Evaluation
Authors: T. Takayama, S. Kikuchi, Y. Hashimoto, T. Ikeda, Y. Murata
Abstract:
Recently, lots of researchers are attracted to retrieving multimedia database by using some impression words and their values. Ikezoe-s research is one of the representatives and uses eight pairs of opposite impression words. We had modified its retrieval interface and proposed '2D-RIB' in the previous work. The aim of the present paper is to improve his/her satisfaction level to the retrieval result in the 2D-RIB. Our method is to extend the 2D-RIB. One of our extensions is to define and introduce the following two measures: 'melody goodness' and 'general acceptance'. Another extension is three types of customization menus. The result of evaluation using a pilot system is as follows. Both of these two measures 'melody goodness' and -general acceptance- can contribute to the improvement. Moreover, it is effective if we introduce the customization menu which enables a retrieval person to reduce the strictness level of retrieval condition in an impression pair based on his/her need.Keywords: Multimedia database, impression-based retrieval, interface, satisfaction level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12182 A Robust and Efficient Segmentation Method Applied for Cardiac Left Ventricle with Abnormal Shapes
Authors: Peifei Zhu, Zisheng Li, Yasuki Kakishita, Mayumi Suzuki, Tomoaki Chono
Abstract:
Segmentation of left ventricle (LV) from cardiac ultrasound images provides a quantitative functional analysis of the heart to diagnose disease. Active Shape Model (ASM) is widely used for LV segmentation, but it suffers from the drawback that initialization of the shape model is not sufficiently close to the target, especially when dealing with abnormal shapes in disease. In this work, a two-step framework is improved to achieve a fast and efficient LV segmentation. First, a robust and efficient detection based on Hough forest localizes cardiac feature points. Such feature points are used to predict the initial fitting of the LV shape model. Second, ASM is applied to further fit the LV shape model to the cardiac ultrasound image. With the robust initialization, ASM is able to achieve more accurate segmentation. The performance of the proposed method is evaluated on a dataset of 810 cardiac ultrasound images that are mostly abnormal shapes. This proposed method is compared with several combinations of ASM and existing initialization methods. Our experiment results demonstrate that accuracy of the proposed method for feature point detection for initialization was 40% higher than the existing methods. Moreover, the proposed method significantly reduces the number of necessary ASM fitting loops and thus speeds up the whole segmentation process. Therefore, the proposed method is able to achieve more accurate and efficient segmentation results and is applicable to unusual shapes of heart with cardiac diseases, such as left atrial enlargement.Keywords: Hough forest, active shape model, segmentation, cardiac left ventricle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15041 Biomethanation of Palm Oil Mill Effluent (POME) by Membrane Anaerobic System (MAS) using POME as a Substrate
Authors: N.H. Abdurahman, Y. M. Rosli, N. H. Azhari, S. F. Tam
Abstract:
The direct discharge of palm oil mill effluent (POME) wastewater causes serious environmental pollution due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Traditional ways for POME treatment have both economical and environmental disadvantages. In this study, a membrane anaerobic system (MAS) was used as an alternative, cost effective method for treating POME. Six steady states were attained as a part of a kinetic study that considered concentration ranges of 8,220 to 15,400 mg/l for mixed liquor suspended solids (MLSS) and 6,329 to 13,244 mg/l for mixed liquor volatile suspended solids (MLVSS). Kinetic equations from Monod, Contois and Chen & Hashimoto were employed to describe the kinetics of POME treatment at organic loading rates ranging from 2 to 13 kg COD/m3/d. throughout the experiment, the removal efficiency of COD was from 94.8 to 96.5% with hydraulic retention time, HRT from 400.6 to 5.7 days. The growth yield coefficient, Y was found to be 0.62gVSS/g COD the specific microorganism decay rate was 0.21 d-1 and the methane gas yield production rate was between 0.25 l/g COD/d and 0.58 l/g COD/d. Steady state influent COD concentrations increased from 18,302 mg/l in the first steady state to 43,500 mg/l in the sixth steady state. The minimum solids retention time, which was obtained from the three kinetic models ranged from 5 to 12.3 days. The k values were in the range of 0.35 – 0.519 g COD/ g VSS • d and values were between 0.26 and 0.379 d-1. The solids retention time (SRT) decreased from 800 days to 11.6 days. The complete treatment reduced the COD content to 2279 mg/l equivalent to a reduction of 94.8% reduction from the original.
Keywords: COD reduction, POME, kinetics, membrane, anaerobic, monod, contois equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2567