Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31482
Size Dependence of 1D Superconductivity in NbN Nanowires on Suspended Carbon Nanotubes

Authors: T. Hashimoto, N. Miki, H. Maki


We report the size dependence of 1D superconductivity in ultrathin (10-130 nm) nanowires produced by coating suspended carbon nanotubes with a superconducting NbN thin film. The resistance-temperature characteristic curves for samples with ≧25 nm wire width show the superconducting transition. On the other hand, for the samples with 10-nm width, the superconducting transition is not exhibited owing to the quantum size effect. The differential resistance vs. current density characteristic curves show some peak, indicating that Josephson junctions are formed in nanowires. The presence of the Josephson junctions is well explained by the measurement of the magnetic field dependence of the critical current. These understanding allow for the further expansion of the potential application of NbN, which is utilized for single photon detectors and so on.

Keywords: NbN nanowire, carbon nanotube, quantum size effect, Josephson junction

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664


[1] R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics, vol. 3, pp. 696−705, Nov. 2009.
[2] G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov et al., “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett., vol. 79, pp. 705-707, Aug. 2001.
[3] F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu et al., “Single-Photon Detectors Based on Ultran arrow Superconducting Nanowires,” Nano Lett., vol. 11, pp. 2048-2053, Apr. 2011.
[4] A. Bezryadin, C. N. Lau, and M. Tinkham, “Quantum suppression of superconductivity in ultrathin nanowires,” Nature, vol. 404, pp. , 971-974, Apr. 2000.
[5] A. Rogachev and A. Bezryadin, “Superconducting properties of polycrystalline Nb,” Appl. Phys. Lett., Vol. 83, pp. 512-514, Mar. 2003.
[6] H. Kim, S. Jamali, and A. Rogachev, “Superconductor-Insulator transition in long MoGe nanowires,” Phys. Rev. Lett., vol. 109, pp. 027002 (1-5), Jul. 2012.
[7] C. N. Lau, N. Markovic, M. Bockrath, A. Bezryadin, and M. Tinkham, “Quantum phase slips in superconducting nanowires,” Phys. Rev. Lett., vol. 87, pp. 217003 (1-4), Nov. 2001.
[8] Y. Zhang and H. Dai, “Formation of metal nanowires on suspended single-walled carbon nanotubes,” Appl. Phys. Lett., vol. 77, pp. 3015-3017, Nov. 2000.
[9] I. L. Singer, R. N. Bolster, S. A. Wolf, and E.F. Skelton, “ Abrasion resistance, microhardness and microstructures of single-phase niobium nitride films,” Thin Sol. Fil., vol. 107, pp. 207-215, Sep. 1983.
[10] K. Baba, R. Hatada , K. Udoh, and K. Yasuda, “Structure and properties of NbN and TaN films prepared by ion beam assisted deposition,” Nucl. Instr. Meth. Phys. Res. B, vol. 127-128, pp. 841-845, May 1997.
[11] I. Hotovy, J. Huran, D. Buc, and R. Srnanek, “Thermal stablity of NbN films deposited on GaAs substrates,” Vac., vol. 50, pp. 45-48, May 1998.
[12] N. Giordano, “Evidence for macroscopic quantum tunneling in one-dimensional superconductors,” Phys. Rev. Lett., vol. 61, pp. 2137-2140, Apr. 1988.
[13] A. J. Van Run, J. Romijn, and J. E. Mooij, “Superconduction phase coherence in very weak aluminum strips,” Jpn. J. Appl. Phys., vol. 26, pp. 1765-1766, 1987.
[14] J. S. Penttila, U. Parts, P. J. Hakonen, M. A. Paalanen, and E. B. Sonin, ““Superconductor-insulator transition” in a single Josephson junction,” Phys. Rev. Lett., vol. 82, pp. 1004-1007, Feb. 1999.
[15] K. Makise, T. Kawaguti and B. Shinozaki, “Superconductor-insulator transitions in quench-condensed Bi films on different underlayers,” Phys. E, vol. 39, pp. 30-36, Jul. 2007.
[16] A. M. Goldman and Y. Liu, “The two-dimensional superconductorinsulator transition,” Phys. D, vol. 83, pp. 163-177, May, 1995.
[17] M. Jung, H. Noh, Y. J. Doh, W. Song, Y. Chong et al., “Superconducting Junction of a Single-Crystalline Au Nanowire for an Ideal Josephson Device,” ACS Nano, vol. 5, pp. 2271-2276, Feb. 2011.
[18] P. G. De Gennes, “Boundary Effects in Superconductors,” Rev. Mod. Phys., vol. 36, pp. 225–237, Jan.1964.
[19] P. G. De Gennes, “Superconductivity of Metals and Alloys,” Addison-Wesley: Redwood City, CA, 1989.
[20] M. Octavio, M. Tinkham, G. E. Blonder, and T. M. Klapwijk, “Subharmonic Energy-Gap Structure in Superconducting Constrictions,” Phys. Rev. B, vol. 28, pp. 6739–6746, Jun. 1983.
[21] M.Kemmler, M. Weides, M. Weiler, M. Opel, S. T. B. Goennenwein et al., “Magnetic interference patterns in 0-π superconductor/ insulator/ ferromagnet/ superconductor Josephson junctions: Effects of asymmetry between 0 and π regions,” Phys. Rev. B, vol. 81, pp. 054522 (1-8), Feb. 2010.