Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Taiki Baba, Tomoaki Hashimoto
Abstract:
The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization.Keywords: Model predictive control, stochastic systems, probabilistic constraints, random dither quantization.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1132088
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019References:
[1] R. Morita, S. Azuma, T. Sugie, Performance Analysis of Random Dither Quantizers in Feedback Control Systems, SICE Journal of Control, Measurement, and System Integration, Vol. 6, No. 1, pp. 21-27, 2013.
[2] T. Hashimoto, Y. Yoshioka, T. Ohtsuka, Receding Horizon Control with Numerical Solution for Thermal Fluid Systems, Proceedings of SICE Annual Conference, pp. 1298-1303, 2012.
[3] T. Hashimoto, Y. Yoshioka, T. Ohtsuka, Receding Horizon Control with Numerical Solution for Spatiotemporal Dynamic Systems, Proceedings of IEEE Conference on Decision and Control, pp. 2920-2925, 2012.
[4] T. Hashimoto, Y. Takiguchi and T. Ohtsuka, Output Feedback Receding Horizon Control for Spatiotemporal Dynamic Systems, Proceedings of Asian Control Conference, 2013.
[5] T. Hashimoto, Y. Yoshioka and T. Ohtsuka, Receding Horizon Control for Hot Strip Mill Cooling Systems, IEEE/ASME Transactions on Mechatronics, Vol. 18, No. 3, pp. 998-1005, 2013.
[6] T. Hashimoto, Y. Yoshioka and T. Ohtsuka, Receding Horizon Control With Numerical Solution for Nonlinear Parabolic Partial Differential Equations, IEEE Transactions on Automatic Control, Vol. 58, No. 3, pp. 725-730, 2013.
[7] T. Hashimoto, Y. Takiguchi and T. Ohtsuka, Receding Horizon Control for High-Dimensional Burgersf Equations with Boundary Control Inputs, Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 56, No.3, pp. 137-144, 2013.
[8] R. Satoh, T. Hashimoto and T. Ohtsuka, Receding Horizon Control for Mass Transport Phenomena in Thermal Fluid Systems, Proceedings of Australian Control Conference, pp. 273-278, 2014.
[9] T. Hashimoto, Receding Horizon Control for a Class of Discrete-time Nonlinear Implicit Systems, Proceedings of IEEE Conference on Decision and Control, pp. 5089-5094, 2014.
[10] T. Hashimoto, Optimal Feedback Control Method Using Magnetic Force for Crystal Growth Dynamics, International Journal of Science and Engineering Investigations, Vol. 4, Issue 45, pp. 1-6, 2015.
[11] T. Hashimoto, R. Satoh and T. Ohtsuka, Receding Horizon Control for Spatiotemporal Dynamic Systems, Mechanical Engineering Journal, Vol. 3, No. 2, 15-00345, 2016.
[12] T. Hashimoto, I. Yoshimoto, T. Ohtsuka, Probabilistic Constrained Model Predictive Control for Schr¨odinger Equation with Finite Approximation, Proceedings of SICE Annual Conference, pp. 1613-1618, 2012.
[13] T. Hashimoto, Probabilistic Constrained Model Predictive Control for Linear Discrete-time Systems with Additive Stochastic Disturbances, Proceedings of IEEE Conference on Decision and Control, pp. 6434-6439, 2013.
[14] T. Hashimoto, Computational Simulations on Stability of Model Predictive Control for Linear Discrete-time Stochastic Systems, International Journal of Computer, Electrical, Automation, Control and Information Engineering, Vol. 9, No. 8, pp. 1385-1390, 2015.
[15] T. Hashimoto, Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, Vol. 9, No. 9, pp. 11-15, 2015.
[16] T. Hashimoto, A Method for Solving Optimal Control Problems subject to Probabilistic Affine State Constraints for Linear Discrete-time Uncertain Systems, International Journal of Mechanical and Production Engineering, Vol. 3, Issue 12, pp. 6-10, 2015.
[17] T. Hashimoto, Solutions to Probabilistic Constrained Optimal Control Problems Using Concentration Inequalities, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, Vol. 10, No. 10, pp. 441-446, 2016.
[18] T. Hashimoto, Stability of Stochastic Model Predictive Control for Schr¨odinger Equation with Finite Approximation, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, Vol. 11, No. 1, pp. 12-17, 2017.
[19] T. Hashimoto, Stochastic Model Predictive Control for Linear Discrete-time Systems with Random Dither Quantization, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, Vol. 11, No. 2, pp. 130-134, 2017.
[20] T. Hashimoto, T. Amemiya and H. A. Fujii, Stabilization of Linear Uncertain Delay Systems with Antisymmetric Stepwise Configurations, Journal of Dynamical and Control Systems, Vol. 14, No. 1, pp. 1-31, 2008.
[21] T. Hashimoto, T. Amemiya and H. A. Fujii, Output Feedback Stabilization of Linear Time-varying Uncertain Delay Systems, Mathematical Problems in Engineering, Vol. 2009, Article ID. 457468, 2009.
[22] T. Hashimoto and T. Amemiya, Stabilization of Linear Time-varying Uncertain Delay Systems with Double Triangular Configuration, WSEAS Transactions on Systems and Control, Vol. 4, No.9, pp.465-475, 2009.
[23] T. Hashimoto, Stabilization of Abstract Delay Systems on Banach Lattices using Nonnegative Semigroups, Proceedings of the 50th IEEE Conference on Decision and Control, pp. 1872-1877, 2011.
[24] T. Hashimoto, A Variable Transformation Method for Stabilizing Abstract Delay Systems on Banach Lattices, Journal of Mathematics Research, Vol. 4, No. 2, pp.2-9, 2012.
[25] T. Hashimoto, An Optimization Algorithm for Designing a Stabilizing Controller for Linear Time-varying Uncertain Systems with State Delays, Computational Mathematics and Modeling, Vol.24, No.1, pp.90-102, 2013.