TY - JFULL
AU - Takashi Shimizu and Tomoaki Hashimoto
PY - 2018/12/
TI - State Estimation Based on Unscented Kalman Filter for Burgersâ€™ Equation
T2 - International Journal of Aerospace and Mechanical Engineering
SP - 1050
EP - 1056
VL - 12
SN - 1307-6892
UR - https://publications.waset.org/pdf/10009815
PU - World Academy of Science, Engineering and Technology
NX - Open Science Index 143, 2018
N2 - Controlling the flow of fluids is a challenging problem
that arises in many fields. Burgers’ equation is a fundamental
equation for several flow phenomena such as traffic, shock waves,
and turbulence. The optimal feedback control method, so-called
model predictive control, has been proposed for Burgers’ equation.
However, the model predictive control method is inapplicable to
systems whose all state variables are not exactly known. In practical
point of view, it is unusual that all the state variables of systems are
exactly known, because the state variables of systems are measured
through output sensors and limited parts of them can be only
available. In fact, it is usual that flow velocities of fluid systems
cannot be measured for all spatial domains. Hence, any practical
feedback controller for fluid systems must incorporate some type of
state estimator. To apply the model predictive control to the fluid
systems described by Burgers’ equation, it is needed to establish
a state estimation method for Burgers’ equation with limited
measurable state variables. To this purpose, we apply unscented
Kalman filter for estimating the state variables of fluid systems
described by Burgers’ equation. The objective of this study is to
establish a state estimation method based on unscented Kalman filter
for Burgers’ equation. The effectiveness of the proposed method is
verified by numerical simulations.
ER -