Search results for: Solid-state sensing electrode.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 469

Search results for: Solid-state sensing electrode.

139 Numerical Analysis and Design of Dielectric to Plasmonic Waveguides Couplers

Authors: Emanuela Paranhos Lima, Vitaly Félix Rodríguez Esquerre

Abstract:

In this work, efficient directional coupler composed of dielectric waveguides and metallic film has been analyzed in details by simulations using finite element method (FEM). The structure consists of a step-index fiber with dielectric core, silica cladding, and a metal nanowire parallel to the core. The results show that an efficient conversion of optical dielectric modes to long range plasmonic is possible. Low insertion losses in conjunction with short coupling length and a broadband operation can be achieved under certain conditions. This kind of couplers has potential applications for the design of photonic integrated circuits for signal routing between dielectric/plasmonic waveguides, sensing, lithography, and optical storage systems. A high efficient focusing of light in a very small region can be obtained.

Keywords: Directional coupler, finite element method, metallic nanowire, plasmonic, surface plasmon polariton.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
138 Quick Spatial Assessment of Drought Information Derived from MODIS Imagery Using Amplitude Analysis

Authors: Meng-Lung Lin, Qiubing Wang, Fujun Sun, Tzu-How Chu, Yi-Shiang Shiu

Abstract:

The normalized difference vegetation index (NDVI) and normalized difference moisture index (NDMI) derived from the moderate resolution imaging spectroradiometer (MODIS) have been widely used to identify spatial information of drought condition. The relationship between NDVI and NDMI has been analyzed using Pearson correlation analysis and showed strong positive relationship. The drought indices have detected drought conditions and identified spatial extents of drought. A comparison between normal year and drought year demonstrates that the amplitude analysis considered both vegetation and moisture condition is an effective method to identify drought condition. We proposed the amplitude analysis is useful for quick spatial assessment of drought information at a regional scale.

Keywords: NDVI, NDMI, Drought, remote sensing, spatialassessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
137 A Real-Time Image Change Detection System

Authors: Madina Hamiane, Amina Khunji

Abstract:

Detecting changes in multiple images of the same scene has recently seen increased interest due to the many contemporary applications including smart security systems, smart homes, remote sensing, surveillance, medical diagnosis, weather forecasting, speed and distance measurement, post-disaster forensics and much more. These applications differ in the scale, nature, and speed of change. This paper presents an application of image processing techniques to implement a real-time change detection system. Change is identified by comparing the RGB representation of two consecutive frames captured in real-time. The detection threshold can be controlled to account for various luminance levels. The comparison result is passed through a filter before decision making to reduce false positives, especially at lower luminance conditions. The system is implemented with a MATLAB Graphical User interface with several controls to manage its operation and performance.

Keywords: Image change detection, Image processing, image filtering, thresholding, B/W quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2528
136 Antioxidant Biosensor Using Microbe

Authors: Dyah Iswantini, Trivadila, Novik Nurhidayat, Waras Nurcholis

Abstract:

The antioxidant compounds are needed for the food, beverages, and pharmaceuticals industry. For this purpose, an appropriate method is required to measure the antioxidant properties in various types of samples. Spectrophotometric method usually used has some weaknesses, including the high price, long sample preparation time, and less sensitivity. Among the alternative methods developed to overcome these weaknesses is antioxidant biosensor based on superoxide dismutase (SOD) enzyme. Therefore, this study was carried out to measure the SOD activity originating from Deinococcus radiodurans and to determine its kinetics properties. Carbon paste electrode modified with ferrocene and immobilized SOD exhibited anode and cathode current peak at potential of +400 and +300mv respectively, in both pure SOD and SOD of D. radiodurans. This indicated that the current generated was from superoxide catalytic dismutation reaction by SOD. Optimum conditions for SOD activity was at pH 9 and temperature of 27.50C for D. radiodurans SOD, and pH 11 and temperature of 200C for pure SOD. Dismutation reaction kinetics of superoxide catalyzed by SOD followed the Lineweaver-Burk kinetics with D. radiodurans SOD KMapp value was smaller than pure SOD. The result showed that D. radiodurans SOD had higher enzyme-substrate affinity and specificity than pure SOD. It concluded that D. radiodurans SOD had a great potential as biological recognition component for antioxidant biosensor.

Keywords: Antioxidant biosensor, Deinococcus radiodurans, enzyme kinetic, superoxide dismutase (SOD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086
135 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils

Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul

Abstract:

In this study, an application was carried out to determine the Volcanic Soils by using remote sensing.  The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.

Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1059
134 Developing Damage Assessment Model for Bridge Surroundings: A Study of Disaster by Typhoon Morakot in Taiwan

Authors: Jieh-Haur Chen, Pei-Fen Huang

Abstract:

This paper presents an integrated model that automatically measures the change of rivers, damage area of bridge surroundings, and change of vegetation. The proposed model is on the basis of a neurofuzzy mechanism enhanced by SOM optimization algorithm, and also includes three functions to deal with river imagery. High resolution imagery from FORMOSAT-2 satellite taken before and after the invasion period is adopted. By randomly selecting a bridge out of 129 destroyed bridges, the recognition results show that the average width has increased 66%. The ruined segment of the bridge is located exactly at the most scour region. The vegetation coverage has also reduced to nearly 90% of the original. The results yielded from the proposed model demonstrate a pinpoint accuracy rate at 99.94%. This study brings up a successful tool not only for large-scale damage assessment but for precise measurement to disasters.

Keywords: remote sensing image, damage assessment, typhoon disaster, bridge, ANN, fuzzy, SOM, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
133 Remote-Sensing Sunspot Images to Obtain the Sunspot Roads

Authors: Hossein Mirzaee, Farhad Besharati

Abstract:

A combination of image fusion and quad tree decomposition method is used for detecting the sunspot trajectories in each month and computation of the latitudes of these trajectories in each solar hemisphere. Daily solar images taken with SOHO satellite are fused for each month and the result of fused image is decomposed with Quad Tree decomposition method in order to classifying the sunspot trajectories and then to achieve the precise information about latitudes of sunspot trajectories. Also with fusion we deduce some physical remarkable conclusions about sun magnetic fields behavior. Using quad tree decomposition we give information about the region on sun surface and the space angle that tremendous flares and hot plasma gases permeate interplanetary space and attack to satellites and human technical systems. Here sunspot images in June, July and August 2001 are used for studying and give a method to compute the latitude of sunspot trajectories in each month with sunspot images.

Keywords: Quad Tree Decomposition, Sunspot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175
132 Experimental Study on Smart Anchor Head

Authors: Young-Jun You, Ki-Tae Park, Kyu-Wan Lee

Abstract:

Since prestressed concrete members rely on the tensile strength of the prestressing strands to resist loads, loss of even few them could result catastrophic. Therefore, it is important to measure present residual prestress force. Although there are some techniques for obtaining present prestress force, some problems still remain. One method is to install load cell in front of anchor head but this may increase cost. Load cell is a transducer using the elastic material property. Anchor head is also an elastic material and this might result in monitoring monitor present prestress force. Features of fiber optic sensor such as small size, great sensitivity, high durability can assign sensing function to anchor head. This paper presents the concept of smart anchor head which acts as load cell and experiment for the applicability of it. Test results showed the smart anchor head worked good and strong linear relationship between load and response.

Keywords: SHM, prestress force, anchor head, fiber optic sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
131 Image Analysis of Fine Structures of Supercavitation in the Symmetric Wake of a Cylinder

Authors: Y. Obikane , M.Kaneko, K.Kakioka, K.Ogura

Abstract:

The fine structure of supercavitation in the wake of a symmetrical cylinder is studied with high-speed video cameras. The flow is observed in a cavitation tunnel at the speed of 8m/sec when the sidewall and the wake are partially filled with the massive cavitation bubbles. The present experiment observed that a two-dimensional ripple wave with a wave length of 0.3mm is propagated in a downstream direction, and then abruptly increases to a thicker three-dimensional layer. IR-photography recorded that the wakes originated from the horseshoe vortexes alongside the cylinder. The wake was developed to inside the dead water zone, which absorbed the bubbly wake propelled from the separated vortices at the center of the cylinder. A remote sensing classification technique (maximum most likelihood) determined that the surface porosity was 0.2, and the mean speed in the mixed wake was 7m/sec. To confirm the existence of two-dimensional wave motions in the interface, the experiments were conducted at a very low frequency, and showed similar gravity waves in both the upper and lower interfaces.

Keywords: Supercavitation, density gradient correlation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
130 Earphone Style Wearable Device for Automatic Guidance Service with Position Sensing

Authors: Dawei Cai

Abstract:

This paper describes a design of earphone style wearable device that may provide an automatic guidance service for visitors. With both position information and orientation information obtained from NFC and terrestrial magnetism sensor, a high level automatic guide service may be realized. To realize the service, a algorithm for position detection using the packet from NFC tags, and developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensors called as MEMS. If visitors want to know some explanation about an exhibit in front of him, what he has to do is only move to the object and stands for a moment. The identification program will automatically recognize the status based on the information from NFC and MEMS, and start playing explanation content about the exhibit. This service should be useful for improving the understanding of the exhibition items and bring more satisfactory visiting experience without less burden.

Keywords: Wearable device, MEMS sensor, NFC, ubiquitous computing, guide system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 943
129 Pattern Recognition Based Prosthesis Control for Movement of Forearms Using Surface and Intramuscular EMG Signals

Authors: Anjana Goen, D. C. Tiwari

Abstract:

Myoelectric control system is the fundamental component of modern prostheses, which uses the myoelectric signals from an individual’s muscles to control the prosthesis movements. The surface electromyogram signal (sEMG) being noninvasive has been used as an input to prostheses controllers for many years. Recent technological advances has led to the development of implantable myoelectric sensors which enable the internal myoelectric signal (MES) to be used as input to these prostheses controllers. The intramuscular measurement can provide focal recordings from deep muscles of the forearm and independent signals relatively free of crosstalk thus allowing for more independent control sites. However, little work has been done to compare the two inputs. In this paper we have compared the classification accuracy of six pattern recognition based myoelectric controllers which use surface myoelectric signals recorded using untargeted (symmetric) surface electrode arrays to the same controllers with multichannel intramuscular myolectric signals from targeted intramuscular electrodes as inputs. There was no significant enhancement in the classification accuracy as a result of using the intramuscular EMG measurement technique when compared to the results acquired using the surface EMG measurement technique. Impressive classification accuracy (99%) could be achieved by optimally selecting only five channels of surface EMG.

Keywords: Discriminant Locality Preserving Projections (DLPP), myoelectric signal (MES), Sparse Principal Component Analysis (SPCA), Time Frequency Representations (TFRs).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
128 Flame Kernel Growth and Related Effects of Spark Plug Electrodes: Fluid Motion Interaction in an Optically Accessible DISI Engine

Authors: A. Schirru, A. Irimescu, S. Merola, A. d’Adamo, S. Fontanesi

Abstract:

One of the aspects that are usually neglected during the design phase of an engine is the effect of the spark plug on the flow field inside the combustion chamber. Because of the difficulties in the experimental investigation of the mutual interaction between flow alteration and early flame kernel convection effect inside the engine combustion chamber, CFD-3D simulation is usually exploited in such cases. Experimentally speaking, a particular type of engine has to be used in order to directly observe the flame propagation process. In this study, a double electrode spark plug was fitted into an optically accessible engine and a high-speed camera was used to capture the initial stages of the combustion process. Both the arc and the kernel phases were observed. Then, a morphologic analysis was carried out and the position of the center of mass of the flame, relative to the spark plug position, was calculated. The crossflow orientation was chosen for the spark plug and the kernel growth process was observed for different air-fuel ratios. It was observed that during a normal cycle the flow field between the electrodes tends to transport the arc deforming it. Because of that, the kernel growth phase takes place away from the electrodes and the flame propagates with a preferential direction dictated by the flow field.

Keywords: Combustion, Kernel growth, optically accessible engine, spark-ignition engine, spark plug orientation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704
127 Artificial Intelligent Approach for Machining Titanium Alloy in a Nonconventional Process

Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama

Abstract:

Artificial neural networks (ANN) are used in distinct researching fields and professions, and are prepared by cooperation of scientists in different fields such as computer engineering, electronic, structure, biology and so many different branches of science. Many models are built correlating the parameters and the outputs in electrical discharge machining (EDM) concern for different types of materials. Up till now model for Ti-5Al-2.5Sn alloy in the case of electrical discharge machining performance characteristics has not been developed. Therefore, in the present work, it is attempted to generate a model of material removal rate (MRR) for Ti-5Al-2.5Sn material by means of Artificial Neural Network. The experimentation is performed according to the design of experiment (DOE) of response surface methodology (RSM). To generate the DOE four parameters such as peak current, pulse on time, pulse off time and servo voltage and one output as MRR are considered. Ti-5Al-2.5Sn alloy is machined with positive polarity of copper electrode. Finally the developed model is tested with confirmation test. The confirmation test yields an error as within the agreeable limit. To investigate the effect of the parameters on performance sensitivity analysis is also carried out which reveals that the peak current having more effect on EDM performance.

Keywords: Ti-5Al-2.5Sn, material removal rate, copper tungsten, positive polarity, artificial neural network, multi-layer perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362
126 Development of Vibration Sensor with Wide Frequency Range Based on Condenser Microphone -Estimation System for Flow Rate in Water Pipes-

Authors: Hironori Kakuta, Kajiro Watanabe, Yosuke Kurihara

Abstract:

Water leakage is a serious problem in the maintenance of a waterworks facility. Monitoring the water flow rate is one way to locate leakage. However, conventional flowmeters such as the wet-type flowmeter and the clamp-on type ultrasonic flowmeter require additional construction for their installation and are therefore quite expensive. This paper proposes a novel estimation system for the flow rate in a water pipeline, which employs a vibration sensor. This assembly can be attached to any water pipeline without the need for additional high-cost construction. The vibration sensor is designed based on a condenser microphone. This sensor detects vibration caused by water flowing through a pipeline. It is possible to estimate the water flow rate by measuring the amplitude of the output signal from the vibration sensor. We confirmed the validity of the proposed sensing system experimentally.

Keywords: Condenser microphone, Flow rate estimation, Piping vibration, Water pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
125 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques

Authors: Chinlun Lai, Lunjyh Jiang

Abstract:

Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.

Keywords: Baby care system, internet of things, deep learning, machine vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
124 Design of Wireless Sensor Networks for Environmental Monitoring Using LoRa

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Wireless Sensor Networks (WSNs) are an emerging technology that opens up a new field of research. The significant advance in WSN leads to an increasing prevalence of various monitoring applications and real-time assistance in labs and factories. Selective surface activation induced by laser (SSAIL) is a promising technology that adapts to the WSN design freedom of shape, dimensions, and material. This article proposes and implements a WSN-based temperature and humidity monitoring system, and its deployed architectures made for the monitoring task are discussed. Experimental results of developed sensor nodes implemented in university campus laboratories are shown. Then, the simulation and the implementation results obtained through monitoring scenarios are displayed. At last, a convenient solution to keep the WSN alive and functional as long as possible is proposed. Unlike other existing models, on success, the node is self-powered and can utilize minimal power consumption for sensing and data transmission to the base station.

Keywords: Internet of Things, IoT, network formation, sensor nodes, SSAIL technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 308
123 Study of Remote Sensing and Satellite Images Ability in Preparing Agricultural Land Use Map (ALUM)

Authors: Ali Gholami

Abstract:

In this research the Preparation of Land use map of scanner LISS III satellite data, belonging to the IRS in the Aghche region in Isfahan province, is studied carefully. For this purpose, the IRS satellite images of August 2008 and various land preparation uses in region including rangelands, irrigation farming, dry farming, gardens and urban areas were separated and identified. Therefore, the GPS and Erdas Imaging software were used and three methods of Maximum Likelihood, Mahalanobis Distance and Minimum Distance were analyzed. In each of these methods, matrix error and Kappa index were calculated and accuracy of each method, based on percentages: 53.13, 56.64 and 48.44, were obtained respectively. Considering the low accuracy of these methods in separation of land preparation use, the visual interpretation of the map was used. Finally, regional visits of 150 points were noted at random and no error was observed. It shows that the map prepared by visual interpretation is in high accuracy. Although the probable errors due to visual interpretation and geometric correction might happen but the desired accuracy of the map which is more than 85 percent is reliable.

Keywords: Land use map, Aghche Region, Erdas Imagine, satellite images

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
122 Effect of Applied Voltage Frequency on Electrical Treeing in 22 kV Cross-linked Polyethylene Insulated Cable

Authors: R. Thiamsri, N. Ruangkajonmathee, A. Oonsivilaiand B. Marungsri

Abstract:

This paper presents the experimental results on effect of applied voltage stress frequency to the occurrence of electrical treeing in 22 kV cross linked polyethylene (XLPE) insulated cable.Hallow disk of XLPE insulating material with thickness 5 mm taken from unused high voltage cable was used as the specimen in this study. Stainless steel needle was inserted gradually into the specimen to give a tip to earth plane electrode separation of 2.50.2 mm at elevated temperature 105-110°C. The specimen was then annealed for 5 minute to minimize any mechanical stress build up around the needle-plane region before it was cooled down to room temperature. Each specimen were subjected to the same applied voltage stress level at 8 kV AC rms, with various frequency, 50, 100, 500, 1000 and 2000 Hz. Initiation time, propagation speed and pattern of electrical treeing were examined in order to study the effect of applied voltage stress frequency. By the experimental results, initial time of visible treeing decreases with increasing in applied voltage frequency. Also, obviously, propagation speed of electrical treeing increases with increasing in applied voltage frequency.Furthermore, two types of electrical treeing, bush-like and branch-like treeing were observed.The experimental results confirmed the effect of voltage stress frequency as well.

Keywords: Voltage stress frequency, cross-linked polyethylene, electrical treeing, treeing propagation, treeing pattern

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582
121 Suspended Matter Model on Alsat-1 Image by MLP Network and Mathematical Morphology: Prototypes by K-Means

Authors: S. Loumi, H. Merrad, F. Alilat, B. Sansal

Abstract:

In this article, we propose a methodology for the characterization of the suspended matter along Algiers-s bay. An approach by multi layers perceptron (MLP) with training by back propagation of the gradient optimized by the algorithm of Levenberg Marquardt (LM) is used. The accent was put on the choice of the components of the base of training where a comparative study made for four methods: Random and three alternatives of classification by K-Means. The samples are taken from suspended matter image, obtained by analytical model based on polynomial regression by taking account of in situ measurements. The mask which selects the zone of interest (water in our case) was carried out by using a multi spectral classification by ISODATA algorithm. To improve the result of classification, a cleaning of this mask was carried out using the tools of mathematical morphology. The results of this study presented in the forms of curves, tables and of images show the founded good of our methodology.

Keywords: Classification K-means, mathematical morphology, neural network MLP, remote sensing, suspended particulate matter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
120 Developing a Town Based Soil Database to Assess the Sensitive Zones in Nutrient Management

Authors: Sefa Aksu, Ünal Kızıl

Abstract:

For this study, a town based soil database created in Gümüsçay District of Biga Town, Çanakkale, Turkey. Crop and livestock production are major activities in the district. Nutrient management is mainly based on commercial fertilizer application ignoring the livestock manure. Within the boundaries of district, 122 soil sampling points determined over the satellite image. Soil samples collected from the determined points with the help of handheld Global Positioning System. Labeled samples were sent to a commercial laboratory to determine 11 soil parameters including salinity, pH, lime, organic matter, nitrogen, phosphorus, potassium, iron, manganese, copper and zinc. Based on the test results soil maps for mentioned parameters were developed using remote sensing, GIS, and geostatistical analysis. In this study we developed a GIS database that will be used for soil nutrient management. Methods were explained and soil maps and their interpretations were summarized in the study.

Keywords: Geostatistics, GIS, Nutrient Management, Soil Mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312
119 An Experimental Study on the Effect of Operating Parameters during the Micro-Electro-Discharge Machining of Ni Based Alloy

Authors: Asma Perveen, M. P. Jahan

Abstract:

Ni alloys have managed to cover wide range of applications such as automotive industries, oil gas industries, and aerospace industries. However, these alloys impose challenges while using conventional machining technologies. On the other hand, Micro-Electro-Discharge machining (micro-EDM) is a non-conventional machining method that uses controlled sparks energy to remove material irrespective of the materials hardness. There has been always a huge interest from the industries for developing optimum methodology and parameters in order to enhance the productivity of micro-EDM in terms of reducing machining time and tool wear for different alloys. Therefore, the aims of this study are to investigate the effects of the micro-EDM process parameters, in order to find their optimal values. The input process parameters include voltage, capacitance, and electrode rotational speed, whereas the output parameters considered are machining time, entrance diameter of hole, overcut, tool wear, and crater size. The surface morphology and element characterization are also investigated with the use of SEM and EDX analysis. The experimental result indicates the reduction of machining time with the increment of discharge energy. Discharge energy also contributes to the enlargement of entrance diameter as well as overcut. In addition, tool wears show reduction with the increase of discharge energy. Moreover, crater size is found to be increased in size along with the increment of discharge energy.

Keywords: Micro EDM, Ni alloy, discharge energy, micro-holes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
118 A Fast Sensor Relocation Algorithm in Wireless Sensor Networks

Authors: Yu-Chen Kuo, Shih-Chieh Lin

Abstract:

Sensor relocation is to repair coverage holes caused by node failures. One way to repair coverage holes is to find redundant nodes to replace faulty nodes. Most researches took a long time to find redundant nodes since they randomly scattered redundant nodes around the sensing field. To record the precise position of sensor nodes, most researches assumed that GPS was installed in sensor nodes. However, high costs and power-consumptions of GPS are heavy burdens for sensor nodes. Thus, we propose a fast sensor relocation algorithm to arrange redundant nodes to form redundant walls without GPS. Redundant walls are constructed in the position where the average distance to each sensor node is the shortest. Redundant walls can guide sensor nodes to find redundant nodes in the minimum time. Simulation results show that our algorithm can find the proper redundant node in the minimum time and reduce the relocation time with low message complexity.

Keywords: Coverage, distributed algorithm, sensor relocation, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
117 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity

Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle

Abstract:

The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.

Keywords: Complex-valued signal processing, synthetic aperture radar (SAR), 2-D radar imaging, compressive sensing, Sparse Bayesian learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
116 Fuzzy based Security Threshold Determining for the Statistical En-Route Filtering in Sensor Networks

Authors: Hae Young Lee, Tae Ho Cho

Abstract:

In many sensor network applications, sensor nodes are deployed in open environments, and hence are vulnerable to physical attacks, potentially compromising the node's cryptographic keys. False sensing report can be injected through compromised nodes, which can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. Ye et al. proposed a statistical en-route filtering scheme (SEF) to detect such false reports during the forwarding process. In this scheme, the choice of a security threshold value is important since it trades off detection power and overhead. In this paper, we propose a fuzzy logic for determining a security threshold value in the SEF based sensor networks. The fuzzy logic determines a security threshold by considering the number of partitions in a global key pool, the number of compromised partitions, and the energy level of nodes. The fuzzy based threshold value can conserve energy, while it provides sufficient detection power.

Keywords: Fuzzy logic, security, sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
115 Land Use Change Detection Using Remote Sensing and GIS

Authors: Naser Ahmadi Sani, Karim Solaimani, Lida Razaghnia, Jalal Zandi

Abstract:

In recent decades, rapid and incorrect changes in land-use have been associated with consequences such as natural resources degradation and environmental pollution. Detecting changes in land-use is one of the tools for natural resource management and assessment of changes in ecosystems. The target of this research is studying the land-use changes in Haraz basin with an area of 677000 hectares in a 15 years period (1996 to 2011) using LANDSAT data. Therefore, the quality of the images was first evaluated. Various enhancement methods for creating synthetic bonds were used in the analysis. Separate training sites were selected for each image. Then the images of each period were classified in 9 classes using supervised classification method and the maximum likelihood algorithm. Finally, the changes were extracted in GIS environment. The results showed that these changes are an alarm for the HARAZ basin status in future. The reason is that 27% of the area has been changed, which is related to changing the range lands to bare land and dry farming and also changing the dense forest to sparse forest, horticulture, farming land and residential area.

Keywords: HARAZ Basin, Change Detection, Land-use, Satellite Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280
114 Wavelet-Based Data Compression Technique for Wireless Sensor Networks

Authors: P. Kumsawat, N. Pimpru, K. Attakitmongcol, A.Srikaew

Abstract:

In this paper, we proposed an efficient data compression strategy exploiting the multi-resolution characteristic of the wavelet transform. We have developed a sensor node called “Smart Sensor Node; SSN". The main goals of the SSN design are lightweight, minimal power consumption, modular design and robust circuitry. The SSN is made up of four basic components which are a sensing unit, a processing unit, a transceiver unit and a power unit. FiOStd evaluation board is chosen as the main controller of the SSN for its low costs and high performance. The software coding of the implementation was done using Simulink model and MATLAB programming language. The experimental results show that the proposed data compression technique yields recover signal with good quality. This technique can be applied to compress the collected data to reduce the data communication as well as the energy consumption of the sensor and so the lifetime of sensor node can be extended.

Keywords: Wireless sensor network, wavelet transform, data compression, ZigBee, skipped high-pass sub-band.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2955
113 Electroencephalography Activity during Sensory Organization Balance Test

Authors: Tariq Ali Gujar, Anita Hökelmann

Abstract:

Postural balance plays essential role throughout life in daily activities. Somatosensory, visual and vestibular inputs play the fundamental role in maintaining body equilibrium to balance the posture. The aim of this study was to find out electroencephalography (EEG) responses during balance activity of young people during Sensory Organization Balance Test. The outcome of this study will help to create the fitness and neurorehabilitation plan. 25 young people (25 ± 3.1 years) have been analyzed on Balance Master NeuroCom® with the coupling of Brain Vision 32 electrode wireless EEG system during the Sensory Organization Test. From the results it has been found that the balance score of samples is significantly higher under the influence of somatosensory input as compared to visual and vestibular input (p < 0.05). The EEG between somatosensory and visual input to balance the posture showed significantly higher (p < 0.05) alpha and beta activities during somatosensory input in somatosensory, attention and visual functions of the cortex whereas executive and motor functions of the cerebral cortex showed significantly higher (p < 0.05) alpha EEG activity during the visual input. The results suggest that somatosensory and attention function of the cerebral cortex has alpha and beta activity, respectively high during somatosensory and vestibular input in maintaining balance. In patients with balance impairments both physical and cognitive training, including neurofeedback will be helpful to improve balance abilities.

Keywords: Balance, electroencephalography activity, somatosensory, visual, vestibular.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 538
112 Fatigue Crack Growth Behavior in Dissimilar Metal Weldment of Stainless Steel and Carbon Steel

Authors: K. Krishnaprasad, Raghu V. Prakash

Abstract:

Constant amplitude fatigue crack growth (FCG) tests were performed on dissimilar metal welded plates of Type 316L Stainless Steel (SS) and IS 2062 Grade A Carbon steel (CS). The plates were welded by TIG welding using SS E309 as electrode. FCG tests were carried on the Side Edge Notch Tension (SENT) specimens of 5 mm thickness, with crack initiator (notch) at base metal region (BM), weld metal region (WM) and heat affected zones (HAZ). The tests were performed at a test frequency of 10 Hz and at load ratios (R) of 0.1 & 0.6. FCG rate was found to increase with stress ratio for weld metals and base metals, where as in case of HAZ, FCG rates were almost equal at high ΔK. FCG rate of HAZ of stainless steel was found to be lowest at low and high ΔK. At intermediate ΔK, WM showed the lowest FCG rate. CS showed higher crack growth rate at all ΔK. However, the scatter band of data was found to be narrow. Fracture toughness (Kc) was found to vary in different locations of weldments. Kc was found lowest for the weldment and highest for HAZ of stainless steel. A novel method of characterizing the FCG behavior using an Infrared thermography (IRT) camera was attempted. By monitoring the temperature rise at the fast moving crack tip region, the amount of plastic deformation was estimated.

Keywords: Dissimilar metal weld, Fatigue Crack Growth, fracture toughness, Infrared thermography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2860
111 Design of Wireless Readout System for Resonant Gas Sensors

Authors: S. Mohamed Rabeek, Mi Kyoung Park, M. Annamalai Arasu

Abstract:

This paper presents a design of a wireless read out system for tracking the frequency shift of the polymer coated piezoelectric micro electromechanical resonator due to gas absorption. The measure of this frequency shift indicates the percentage of a particular gas the sensor is exposed to. It is measured using an oscillator and an FPGA based frequency counter by employing the resonator as a frequency determining element in the oscillator. This system consists of a Gas Sensing Wireless Readout (GSWR) and an USB Wireless Transceiver (UWT). GSWR consists of an oscillator based on a trans-impedance sustaining amplifier, an FPGA based frequency readout, a sub 1GHz wireless transceiver and a micro controller. UWT can be plugged into the computer via USB port and function as a wireless module to transfer gas sensor data from GSWR to the computer through its USB port. GUI program running on the computer periodically polls for sensor data through UWT - GSWR wireless link, the response from GSWR is logged in a file for post processing as well as displayed on screen.

Keywords: Gas sensor, GSWR, micro-mechanical system, UWT, volatile emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
110 Tool Failure Detection Based on Statistical Analysis of Metal Cutting Acoustic Emission Signals

Authors: Othman Belgassim, Krzysztof Jemielniak

Abstract:

The analysis of Acoustic Emission (AE) signal generated from metal cutting processes has often approached statistically. This is due to the stochastic nature of the emission signal as a result of factors effecting the signal from its generation through transmission and sensing. Different techniques are applied in this manner, each of which is suitable for certain processes. In metal cutting where the emission generated by the deformation process is rather continuous, an appropriate method for analysing the AE signal based on the root mean square (RMS) of the signal is often used and is suitable for use with the conventional signal processing systems. The aim of this paper is to set a strategy in tool failure detection in turning processes via the statistic analysis of the AE generated from the cutting zone. The strategy is based on the investigation of the distribution moments of the AE signal at predetermined sampling. The skews and kurtosis of these distributions are the key elements in the detection. A normal (Gaussian) distribution has first been suggested then this was eliminated due to insufficiency. The so called Beta distribution was then considered, this has been used with an assumed β density function and has given promising results with regard to chipping and tool breakage detection.

Keywords: AE signal, skew, kurtosis, tool failure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807