Search results for: SOM
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 45

Search results for: SOM

45 TOSOM: A Topic-Oriented Self-Organizing Map for Text Organization

Authors: Hsin-Chang Yang, Chung-Hong Lee, Kuo-Lung Ke

Abstract:

The self-organizing map (SOM) model is a well-known neural network model with wide spread of applications. The main characteristics of SOM are two-fold, namely dimension reduction and topology preservation. Using SOM, a high-dimensional data space will be mapped to some low-dimensional space. Meanwhile, the topological relations among data will be preserved. With such characteristics, the SOM was usually applied on data clustering and visualization tasks. However, the SOM has main disadvantage of the need to know the number and structure of neurons prior to training, which are difficult to be determined. Several schemes have been proposed to tackle such deficiency. Examples are growing/expandable SOM, hierarchical SOM, and growing hierarchical SOM. These schemes could dynamically expand the map, even generate hierarchical maps, during training. Encouraging results were reported. Basically, these schemes adapt the size and structure of the map according to the distribution of training data. That is, they are data-driven or dataoriented SOM schemes. In this work, a topic-oriented SOM scheme which is suitable for document clustering and organization will be developed. The proposed SOM will automatically adapt the number as well as the structure of the map according to identified topics. Unlike other data-oriented SOMs, our approach expands the map and generates the hierarchies both according to the topics and their characteristics of the neurons. The preliminary experiments give promising result and demonstrate the plausibility of the method.

Keywords: Self-organizing map, topic identification, learning algorithm, text clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
44 Intelligent Network-Based Stepping Stone Detection Approach

Authors: Mohd Nizam Omar, Rahmat Budiarto

Abstract:

This research intends to introduce a new usage of Artificial Intelligent (AI) approaches in Stepping Stone Detection (SSD) fields of research. By using Self-Organizing Map (SOM) approaches as the engine, through the experiment, it is shown that SOM has the capability to detect the number of connection chains that involved in a stepping stones. Realizing that by counting the number of connection chain is one of the important steps of stepping stone detection and it become the research focus currently, this research has chosen SOM as the AI techniques because of its capabilities. Through the experiment, it is shown that SOM can detect the number of involved connection chains in Network-based Stepping Stone Detection (NSSD).

Keywords: Artificial Intelligent, Self-Organizing Map (SOM), Stepping Stone Detection, Tracing Intruder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
43 An Experimental Comparison of Unsupervised Learning Techniques for Face Recognition

Authors: Dinesh Kumar, C.S. Rai, Shakti Kumar

Abstract:

Face Recognition has always been a fascinating research area. It has drawn the attention of many researchers because of its various potential applications such as security systems, entertainment, criminal identification etc. Many supervised and unsupervised learning techniques have been reported so far. Principal Component Analysis (PCA), Self Organizing Maps (SOM) and Independent Component Analysis (ICA) are the three techniques among many others as proposed by different researchers for Face Recognition, known as the unsupervised techniques. This paper proposes integration of the two techniques, SOM and PCA, for dimensionality reduction and feature selection. Simulation results show that, though, the individual techniques SOM and PCA itself give excellent performance but the combination of these two can also be utilized for face recognition. Experimental results also indicate that for the given face database and the classifier used, SOM performs better as compared to other unsupervised learning techniques. A comparison of two proposed methodologies of SOM, Local and Global processing, shows the superiority of the later but at the cost of more computational time.

Keywords: Face Recognition, Principal Component Analysis, Self Organizing Maps, Independent Component Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
42 Assessment of Sediment Remediation Potential using Microbial Fuel Cell Technology

Authors: S. W. Hong, Y. S. Choi, T. H. Chung, J. H. Song, H. S. Kim

Abstract:

Bio-electrical responses obtained from freshwater sediments by employing microbial fuel cell (MFC) technology were investigated in this experimental study. During the electricity generation, organic matter in the sediment was microbially oxidized under anaerobic conditions with an electrode serving as a terminal electron acceptor. It was found that the sediment organic matter (SOM) associated with electrochemically-active electrodes became more humified, aromatic, and polydispersed, and had a higher average molecular weight, together with the decrease in the quantity of SOM. The alteration of characteristics of the SOM was analogous to that commonly observed in the early stage of SOM diagenetic process (i.e., humification). These findings including an elevation of the sediment redox potential present a possibility of the MFC technology as a new soil/sediment remediation technique based on its potential benefits: non-destructive electricity generation and bioremediation.

Keywords: Anaerobic oxidation, microbial fuel cell, remediation, sediment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
41 Performance Comparison of Particle Swarm Optimization with Traditional Clustering Algorithms used in Self-Organizing Map

Authors: Anurag Sharma, Christian W. Omlin

Abstract:

Self-organizing map (SOM) is a well known data reduction technique used in data mining. It can reveal structure in data sets through data visualization that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOM, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of an adaptive heuristic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOM. The application of our method to several standard data sets demonstrates its feasibility. PSO algorithm utilizes a so-called U-matrix of SOM to determine cluster boundaries; the results of this novel automatic method compare very favorably to boundary detection through traditional algorithms namely k-means and hierarchical based approach which are normally used to interpret the output of SOM.

Keywords: cluster boundaries, clustering, code vectors, data mining, particle swarm optimization, self-organizing maps, U-matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
40 Self-Organizing Map Network for Wheeled Robot Movement Optimization

Authors: Boguslaw Schreyer

Abstract:

The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.

Keywords: SOM network, torque distribution, torque slope, wheeled robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 621
39 Enhanced Clustering Analysis and Visualization Using Kohonen's Self-Organizing Feature Map Networks

Authors: Kasthurirangan Gopalakrishnan, Siddhartha Khaitan, Anshu Manik

Abstract:

Cluster analysis is the name given to a diverse collection of techniques that can be used to classify objects (e.g. individuals, quadrats, species etc). While Kohonen's Self-Organizing Feature Map (SOFM) or Self-Organizing Map (SOM) networks have been successfully applied as a classification tool to various problem domains, including speech recognition, image data compression, image or character recognition, robot control and medical diagnosis, its potential as a robust substitute for clustering analysis remains relatively unresearched. SOM networks combine competitive learning with dimensionality reduction by smoothing the clusters with respect to an a priori grid and provide a powerful tool for data visualization. In this paper, SOM is used for creating a toroidal mapping of two-dimensional lattice to perform cluster analysis on results of a chemical analysis of wines produced in the same region in Italy but derived from three different cultivators, referred to as the “wine recognition data" located in the University of California-Irvine database. The results are encouraging and it is believed that SOM would make an appealing and powerful decision-support system tool for clustering tasks and for data visualization.

Keywords: Artificial neural networks, cluster analysis, Kohonen maps, wine recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
38 Hierarchical Clustering Analysis with SOM Networks

Authors: Diego Ordonez, Carlos Dafonte, Minia Manteiga, Bernardino Arcayy

Abstract:

This work presents a neural network model for the clustering analysis of data based on Self Organizing Maps (SOM). The model evolves during the training stage towards a hierarchical structure according to the input requirements. The hierarchical structure symbolizes a specialization tool that provides refinements of the classification process. The structure behaves like a single map with different resolutions depending on the region to analyze. The benefits and performance of the algorithm are discussed in application to the Iris dataset, a classical example for pattern recognition.

Keywords: Neural networks, Self-organizing feature maps, Hierarchicalsystems, Pattern clustering methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
37 Comparison of Different Neural Network Approaches for the Prediction of Kidney Dysfunction

Authors: Ali Hussian Ali AlTimemy, Fawzi M. Al Naima

Abstract:

This paper presents the prediction of kidney dysfunction using different neural network (NN) approaches. Self organization Maps (SOM), Probabilistic Neural Network (PNN) and Multi Layer Perceptron Neural Network (MLPNN) trained with Back Propagation Algorithm (BPA) are used in this study. Six hundred and sixty three sets of analytical laboratory tests have been collected from one of the private clinical laboratories in Baghdad. For each subject, Serum urea and Serum creatinin levels have been analyzed and tested by using clinical laboratory measurements. The collected urea and cretinine levels are then used as inputs to the three NN models in which the training process is done by different neural approaches. SOM which is a class of unsupervised network whereas PNN and BPNN are considered as class of supervised networks. These networks are used as a classifier to predict whether kidney is normal or it will have a dysfunction. The accuracy of prediction, sensitivity and specificity were found for each type of the proposed networks .We conclude that PNN gives faster and more accurate prediction of kidney dysfunction and it works as promising tool for predicting of routine kidney dysfunction from the clinical laboratory data.

Keywords: Kidney Dysfunction, Prediction, SOM, PNN, BPNN, Urea and Creatinine levels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
36 Topology Preservation in SOM

Authors: E. Arsuaga Uriarte, F. Díaz Martín

Abstract:

The SOM has several beneficial features which make it a useful method for data mining. One of the most important features is the ability to preserve the topology in the projection. There are several measures that can be used to quantify the goodness of the map in order to obtain the optimal projection, including the average quantization error and many topological errors. Many researches have studied how the topology preservation should be measured. One option consists of using the topographic error which considers the ratio of data vectors for which the first and second best BMUs are not adjacent. In this work we present a study of the behaviour of the topographic error in different kinds of maps. We have found that this error devaluates the rectangular maps and we have studied the reasons why this happens. Finally, we suggest a new topological error to improve the deficiency of the topographic error.

Keywords: Map lattice, Self-Organizing Map, topographic error, topology preservation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3060
35 A New Face Detection Technique using 2D DCT and Self Organizing Feature Map

Authors: Abdallah S. Abdallah, A. Lynn Abbott, Mohamad Abou El-Nasr

Abstract:

This paper presents a new technique for detection of human faces within color images. The approach relies on image segmentation based on skin color, features extracted from the two-dimensional discrete cosine transform (DCT), and self-organizing maps (SOM). After candidate skin regions are extracted, feature vectors are constructed using DCT coefficients computed from those regions. A supervised SOM training session is used to cluster feature vectors into groups, and to assign “face" or “non-face" labels to those clusters. Evaluation was performed using a new image database of 286 images, containing 1027 faces. After training, our detection technique achieved a detection rate of 77.94% during subsequent tests, with a false positive rate of 5.14%. To our knowledge, the proposed technique is the first to combine DCT-based feature extraction with a SOM for detecting human faces within color images. It is also one of a few attempts to combine a feature-invariant approach, such as color-based skin segmentation, together with appearance-based face detection. The main advantage of the new technique is its low computational requirements, in terms of both processing speed and memory utilization.

Keywords: Face detection, skin color segmentation, self-organizingmap.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564
34 Kohonen Self-Organizing Maps as a New Method for Determination of Salt Composition of Multi-Component Solutions

Authors: Sergey A. Burikov, Tatiana A. Dolenko, Kirill A. Gushchin, Sergey A. Dolenko

Abstract:

The paper presents the results of clusterization by Kohonen self-organizing maps (SOM) applied for analysis of array of Raman spectra of multi-component solutions of inorganic salts, for determination of types of salts present in the solution. It is demonstrated that use of SOM is a promising method for solution of clusterization and classification problems in spectroscopy of multicomponent objects, as attributing a pattern to some cluster may be used for recognition of component composition of the object.

Keywords: Kohonen self-organizing maps, clusterization, multicomponent solutions, Raman spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
33 Initialization Method of Reference Vectors for Improvement of Recognition Accuracy in LVQ

Authors: Yuji Mizuno, Hiroshi Mabuchi

Abstract:

Initial values of reference vectors have significant influence on recognition accuracy in LVQ. There are several existing techniques, such as SOM and k-means, for setting initial values of reference vectors, each of which has provided some positive results. However, those results are not sufficient for the improvement of recognition accuracy. This study proposes an ACO-used method for initializing reference vectors with an aim to achieve recognition accuracy higher than those obtained through conventional methods. Moreover, we will demonstrate the effectiveness of the proposed method by applying it to the wine data and English vowel data and comparing its results with those of conventional methods.

Keywords: Clustering, LVQ, ACO, SOM, k-means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281
32 Generating Concept Trees from Dynamic Self-organizing Map

Authors: Norashikin Ahmad, Damminda Alahakoon

Abstract:

Self-organizing map (SOM) provides both clustering and visualization capabilities in mining data. Dynamic self-organizing maps such as Growing Self-organizing Map (GSOM) has been developed to overcome the problem of fixed structure in SOM to enable better representation of the discovered patterns. However, in mining large datasets or historical data the hierarchical structure of the data is also useful to view the cluster formation at different levels of abstraction. In this paper, we present a technique to generate concept trees from the GSOM. The formation of tree from different spread factor values of GSOM is also investigated and the quality of the trees analyzed. The results show that concept trees can be generated from GSOM, thus, eliminating the need for re-clustering of the data from scratch to obtain a hierarchical view of the data under study.

Keywords: dynamic self-organizing map, concept formation, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
31 Alertness States Classification By SOM and LVQ Neural Networks

Authors: K. Ben Khalifa, M.H. Bédoui, M. Dogui, F. Alexandre

Abstract:

Several studies have been carried out, using various techniques, including neural networks, to discriminate vigilance states in humans from electroencephalographic (EEG) signals, but we are still far from results satisfactorily useable results. The work presented in this paper aims at improving this status with regards to 2 aspects. Firstly, we introduce an original procedure made of the association of two neural networks, a self organizing map (SOM) and a learning vector quantization (LVQ), that allows to automatically detect artefacted states and to separate the different levels of vigilance which is a major breakthrough in the field of vigilance. Lastly and more importantly, our study has been oriented toward real-worked situation and the resulting model can be easily implemented as a wearable device. It benefits from restricted computational and memory requirements and data access is very limited in time. Furthermore, some ongoing works demonstrate that this work should shortly results in the design and conception of a non invasive electronic wearable device.

Keywords: Electroencephalogram interpretation, artificialneural networks, vigilance states, hardware implementation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
30 Evaluation of Groundwater Quality and Its Suitability for Drinking and Agricultural Purposes Using Self-Organizing Maps

Authors: L. Belkhiri, L. Mouni, A. Tiri, T.S. Narany

Abstract:

In the present study, the self-organizing map (SOM) clustering technique was applied to identify homogeneous clusters of hydrochemical parameters in El Milia plain, Algeria, to assess the quality of groundwater for potable and agricultural purposes. The visualization of SOM-analysis indicated that 35 groundwater samples collected in the study area were classified into three clusters, which showed progressive increase in electrical conductivity from cluster one to cluster three. Samples belonging to cluster one are mostly located in the recharge zone showing hard fresh water type, however, water type gradually changed to hard-brackish type in the discharge zone, including clusters two and three. Ionic ratio studies indicated the role of carbonate rock dissolution in increases on groundwater hardness, especially in cluster one. However, evaporation and evapotranspiration are the main processes increasing salinity in cluster two and three.

Keywords: Drinking water, groundwater quality, irrigation water, self-organizing maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
29 Developing Damage Assessment Model for Bridge Surroundings: A Study of Disaster by Typhoon Morakot in Taiwan

Authors: Jieh-Haur Chen, Pei-Fen Huang

Abstract:

This paper presents an integrated model that automatically measures the change of rivers, damage area of bridge surroundings, and change of vegetation. The proposed model is on the basis of a neurofuzzy mechanism enhanced by SOM optimization algorithm, and also includes three functions to deal with river imagery. High resolution imagery from FORMOSAT-2 satellite taken before and after the invasion period is adopted. By randomly selecting a bridge out of 129 destroyed bridges, the recognition results show that the average width has increased 66%. The ruined segment of the bridge is located exactly at the most scour region. The vegetation coverage has also reduced to nearly 90% of the original. The results yielded from the proposed model demonstrate a pinpoint accuracy rate at 99.94%. This study brings up a successful tool not only for large-scale damage assessment but for precise measurement to disasters.

Keywords: remote sensing image, damage assessment, typhoon disaster, bridge, ANN, fuzzy, SOM, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
28 Effect of Zeolite on the Decomposition Resistance of Organic Matter in Tropical Soils under Global Warming

Authors: Mai Thanh Truc, Masao Yoshida

Abstract:

Global temperature had increased by about 0.5oC over the past century, increasing temperature leads to a loss or a decrease of soil organic matter (SOM). Whereas soil organic matter in many tropical soils is less stable than that of temperate soils, and it will be easily affected by climate change. Therefore, conservation of soil organic matter is urgent issue nowadays. This paper presents the effect of different doses (5%, 15%) of Ca-type zeolite in conjunction with organic manure, applied to soil samples from Philippines, Paraguay and Japan, on the decomposition resistance of soil organic matter under high temperature. Results showed that a remain or slightly increase the C/N ratio of soil. There are an increase in percent of humic acid (PQ) that extracted with Na4P2O7. A decrease of percent of free humus (fH) after incubation was determined. A larger the relative color intensity (RF) value and a lower the color coefficient (6logK) value following increasing zeolite rates leading to a higher degrees of humification. The increase in the aromatic condensation of humic acid (HA) after incubation, as indicates by the decrease of H/C and O/C ratios of HA. This finding indicates that the use of zeolite could be beneficial with respect to SOM conservation under global warming condition.

Keywords: Global warming, Humic substances, Soil organicmatter, Zeolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2238
27 Characterization of Organic Matter in Spodosol Amazonian by Fluorescence Spectroscopy

Authors: Amanda M. Tadini, Houssam Hajjoul, Gustavo Nicolodelli, Stéphane Mounier, Célia R. Montes, Débora M. B. P. Milori

Abstract:

Soil organic matter (SOM) plays an important role in maintaining soil productivity and accounting for the promotion of biological diversity. The main components of the SOM are the humic substances which can be fractionated according to its solubility in humic acid (HA), fulvic acids (FA) and humin (HU). The determination of the chemical properties of organic matter as well as its interaction with metallic species is an important tool for understanding the structure of the humic fractions. Fluorescence spectroscopy has been studied as a source of information about what is happening at the molecular level in these compounds. Specially, soils of Amazon region are an important ecosystem of the planet. The aim of this study is to understand the molecular and structural composition of HA samples from Spodosol of Amazonia using the fluorescence Emission-Excitation Matrix (EEM) and Time Resolved Fluorescence Spectroscopy (TRFS). The results showed that the samples of HA showed two fluorescent components; one has a more complex structure and the other one has a simpler structure, which was also seen in TRFS through the evaluation of each sample lifetime. Thus, studies of this nature become important because it aims to evaluate the molecular and structural characteristics of the humic fractions in the region that is considered as one of the most important regions in the world, the Amazon.

Keywords: Amazonian soil, characterization, fluorescence, humic acid, lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1145
26 Building a Personalized Multidimensional Intelligent Learning System

Authors: Lun-Ping Hung, Nan-Chen Hsieh, Chia-Ling Ho, Chien-Liang Chen

Abstract:

Currently, most of distance learning courses can only deliver standard material to students. Students receive course content passively which leads to the neglect of the goal of education – “to suit the teaching to the ability of students". Providing appropriate course content according to students- ability is the main goal of this paper. Except offering a series of conventional learning services, abundant information available, and instant message delivery, a complete online learning environment should be able to distinguish between students- ability and provide learning courses that best suit their ability. However, if a distance learning site contains well-designed course content and design but fails to provide adaptive courses, students will gradually loss their interests and confidence in learning and result in ineffective learning or discontinued learning. In this paper, an intelligent tutoring system is proposed and it consists of several modules working cooperatively in order to build an adaptive learning environment for distance education. The operation of the system is based on the result of Self-Organizing Map (SOM) to divide students into different groups according to their learning ability and learning interests and then provide them with suitable course content. Accordingly, the problem of information overload and internet traffic problem can be solved because the amount of traffic accessing the same content is reduced.

Keywords: Distance Learning, Intelligent Tutoring System(ITS), Self-Organizing Map (SOM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
25 Identification of Disease Causing DNA Motifs in Human DNA Using Clustering Approach

Authors: G. Tamilpavai, C. Vishnuppriya

Abstract:

Studying DNA (deoxyribonucleic acid) sequence is useful in biological processes and it is applied in the fields such as diagnostic and forensic research. DNA is the hereditary information in human and almost all other organisms. It is passed to their generations. Earlier stage detection of defective DNA sequence may lead to many developments in the field of Bioinformatics. Nowadays various tedious techniques are used to identify defective DNA. The proposed work is to analyze and identify the cancer-causing DNA motif in a given sequence. Initially the human DNA sequence is separated as k-mers using k-mer separation rule. The separated k-mers are clustered using Self Organizing Map (SOM). Using Levenshtein distance measure, cancer associated DNA motif is identified from the k-mer clusters. Experimental results of this work indicate the presence or absence of cancer causing DNA motif. If the cancer associated DNA motif is found in DNA, it is declared as the cancer disease causing DNA sequence. Otherwise the input human DNA is declared as normal sequence. Finally, elapsed time is calculated for finding the presence of cancer causing DNA motif using clustering formation. It is compared with normal process of finding cancer causing DNA motif. Locating cancer associated motif is easier in cluster formation process than the other one. The proposed work will be an initiative aid for finding genetic disease related research.

Keywords: Bioinformatics, cancer motif, DNA, k-mers, Levenshtein distance, SOM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
24 Effects of Energy Consumption on Indoor Air Quality

Authors: M. Raatikainen, J-P. Skön, M. Johansson, K. Leiviskä, M. Kolehmainen

Abstract:

Continuous measurements and multivariate methods are applied in researching the effects of energy consumption on indoor air quality (IAQ) in a Finnish one-family house. Measured data used in this study was collected continuously in a house in Kuopio, Eastern Finland, during fourteen months long period. Consumption parameters measured were the consumptions of district heat, electricity and water. Indoor parameters gathered were temperature, relative humidity (RH), the concentrations of carbon dioxide (CO2) and carbon monoxide (CO) and differential air pressure. In this study, self-organizing map (SOM) and Sammon's mapping were applied to resolve the effects of energy consumption on indoor air quality. Namely, the SOM was qualified as a suitable method having a property to summarize the multivariable dependencies into easily observable two-dimensional map. Accompanying that, the Sammon's mapping method was used to cluster pre-processed data to find similarities of the variables, expressing distances and groups in the data. The methods used were able to distinguish 7 different clusters characterizing indoor air quality and energy efficiency in the study house. The results indicate, that the cost implications in euros of heating and electricity energy vary according to the differential pressure, concentration of carbon dioxide, temperature and season.

Keywords: Indoor air quality, Energy efficiency, Self- organizing map, Sammon's mapping

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
23 Certain Data Dimension Reduction Techniques for application with ANN based MCS for Study of High Energy Shower

Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta

Abstract:

Cosmic showers, from their places of origin in space, after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of EAS and similar High Energy Particle Showers involve a plethora of experimental setups with certain constraints for which soft-computational tools like Artificial Neural Network (ANN)s can be adopted. The optimality of ANN classifiers can be enhanced further by the use of Multiple Classifier System (MCS) and certain data - dimension reduction techniques. This work describes the performance of certain data dimension reduction techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Self Organizing Map (SOM) approximators for application with an MCS formed using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN). The data inputs are obtained from an array of detectors placed in a circular arrangement resembling a practical detector grid which have a higher dimension and greater correlation among themselves. The PCA, ICA and SOM blocks reduce the correlation and generate a form suitable for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.

Keywords: EAS, Shower, Core, ANN, Location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
22 ANN based Multi Classifier System for Prediction of High Energy Shower Primary Energy and Core Location

Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta

Abstract:

Cosmic showers, during the transit through space, produce sub - products as a result of interactions with the intergalactic or interstellar medium which after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of High Energy Particle Showers involve a plethora of theoretical and experimental works with a host of constraints resulting in inaccuracies in measurements. Therefore, there exist a necessity to develop a readily available system based on soft-computational approaches which can be used for EAS analysis. This is due to the fact that soft computational tools such as Artificial Neural Network (ANN)s can be trained as classifiers to adapt and learn the surrounding variations. But single classifiers fail to reach optimality of decision making in many situations for which Multiple Classifier System (MCS) are preferred to enhance the ability of the system to make decisions adjusting to finer variations. This work describes the formation of an MCS using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN) with data inputs from correlation mapping Self Organizing Map (SOM) blocks and the output optimized by another SOM. The results show that the setup can be adopted for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.

Keywords: EAS, Shower, Core, ANN, Location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
21 Tourist Satisfaction and Repeat Visitation; Toward a New Comprehensive Model

Authors: Ahmad Puad Mat Som, Mohammad Bader Badarneh

Abstract:

Tourism researchers have recently focused on repeat visitation as a part of destination loyalty. Different models have also considered satisfaction as the main determinant of revisit intention, while findings in many studies show it as a continuous issue. This conceptual paper attempts at evaluating recent empirical studies on satisfaction and revisit intention. Based on limitations and gaps in recent studies, the current paper suggests a new model that would be more comprehensive than those in previous studies. The new model offers new relationships between antecedents (destination image, perceived value, specific novelty seeking, and distance to destination) and both of satisfaction and revisit intention. Revisit intention in turn is suggested to be measured in a temporal approach.

Keywords: Satisfaction, revisit intention, a new model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7163
20 Denoising based on Wavelets and Deblurring via Self-Organizing Map for Synthetic Aperture Radar Images

Authors: Mario Mastriani

Abstract:

This work deals with unsupervised image deblurring. We present a new deblurring procedure on images provided by lowresolution synthetic aperture radar (SAR) or simply by multimedia in presence of multiplicative (speckle) or additive noise, respectively. The method we propose is defined as a two-step process. First, we use an original technique for noise reduction in wavelet domain. Then, the learning of a Kohonen self-organizing map (SOM) is performed directly on the denoised image to take out it the blur. This technique has been successfully applied to real SAR images, and the simulation results are presented to demonstrate the effectiveness of the proposed algorithms.

Keywords: Blur, Kohonen self-organizing map, noise, speckle, synthetic aperture radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
19 Kinetics of Cu (II) Transport through Bulk Liquid Membrane with Different Membrane Materials

Authors: Siu Hua Chang, Ayub Md Som, Jagannathan Krishnan

Abstract:

The kinetics of Cu(II) transport through a bulk liquid membrane with different membrane materials was investigated in this work. Three types of membrane materials were used: fresh cooking oil, waste cooking oil and kerosene, each of which was mixed with di-2-ethylhexylphosphoric acid (carrier) and tributylphosphate (modifier). Kinetic models derived from the kinetic laws of two consecutive irreversible first-order reactions were used to study the facilitated transport of Cu(II) across the source, membrane and receiving phases of bulk liquid membrane. It was found that the transport kinetics of Cu(II) across the source phase was not affected by different types of membrane materials but decreased considerably when the membrane materials changed from kerosene, waste cooking oil to fresh cooking oil. The rate constants of Cu(II) removal and recovery processes through the bulk liquid membrane were also determined.

Keywords: Transport kinetics, Cu(II), bulk liquid membrane, waste cooking oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
18 High Volume Fly Ash Concrete for Paver Blocks

Authors: Som Nath Sachdeva, Vanita Aggarwal, S. M. Gupta

Abstract:

Use of concrete paver blocks is becoming increasingly popular. They are used for paving of approaches, paths and parking areas including their application in pre-engineered buildings and pavements. This paper discusses the results of an experimental study conducted on Fly Ash Concrete with the aim to report its suitability for concrete paver blocks. In this study, the effect of varying proportions of fly ash, 20% to 40%, on compressive strength and flexural strength of concrete has been evaluated. The mix designs studied are M-30, M-35, M-40 and M-50. It is observed that all the fly ash based mixes are able to achieve the required compressive and flexural strengths. In comparison to control mixes, the compressive and flexural strengths of the fly ash based mixes are found to be slightly less at 7-days and 28 days and a little more at 90 days.

Keywords: Compressive strength, flexural strength, high volume fly ash concrete, paver blocks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4898
17 Multi-Agent Systems for Intelligent Clustering

Authors: Jung-Eun Park, Kyung-Whan Oh

Abstract:

Intelligent systems are required in order to quickly and accurately analyze enormous quantities of data in the Internet environment. In intelligent systems, information extracting processes can be divided into supervised learning and unsupervised learning. This paper investigates intelligent clustering by unsupervised learning. Intelligent clustering is the clustering system which determines the clustering model for data analysis and evaluates results by itself. This system can make a clustering model more rapidly, objectively and accurately than an analyzer. The methodology for the automatic clustering intelligent system is a multi-agent system that comprises a clustering agent and a cluster performance evaluation agent. An agent exchanges information about clusters with another agent and the system determines the optimal cluster number through this information. Experiments using data sets in the UCI Machine Repository are performed in order to prove the validity of the system.

Keywords: Intelligent Clustering, Multi-Agent System, PCA, SOM, VC(Variance Criterion)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
16 Predictive Clustering Hybrid Regression(pCHR) Approach and Its Application to Sucrose-Based Biohydrogen Production

Authors: Nikhil, Ari Visa, Chin-Chao Chen, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja

Abstract:

A predictive clustering hybrid regression (pCHR) approach was developed and evaluated using dataset from H2- producing sucrose-based bioreactor operated for 15 months. The aim was to model and predict the H2-production rate using information available about envirome and metabolome of the bioprocess. Selforganizing maps (SOM) and Sammon map were used to visualize the dataset and to identify main metabolic patterns and clusters in bioprocess data. Three metabolic clusters: acetate coupled with other metabolites, butyrate only, and transition phases were detected. The developed pCHR model combines principles of k-means clustering, kNN classification and regression techniques. The model performed well in modeling and predicting the H2-production rate with mean square error values of 0.0014 and 0.0032, respectively.

Keywords: Biohydrogen, bioprocess modeling, clusteringhybrid regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794