

Abstract—Sensor relocation is to repair coverage holes caused by

node failures. One way to repair coverage holes is to find redundant
nodes to replace faulty nodes. Most researches took a long time to find
redundant nodes since they randomly scattered redundant nodes
around the sensing field. To record the precise position of sensor
nodes, most researches assumed that GPS was installed in sensor
nodes. However, high costs and power-consumptions of GPS are
heavy burdens for sensor nodes. Thus, we propose a fast sensor
relocation algorithm to arrange redundant nodes to form redundant
walls without GPS. Redundant walls are constructed in the position
where the average distance to each sensor node is the shortest.
Redundant walls can guide sensor nodes to find redundant nodes in the
minimum time. Simulation results show that our algorithm can find the
proper redundant node in the minimum time and reduce the relocation
time with low message complexity.

Keywords—Coverage, distributed algorithm, sensor relocation,
wireless sensor networks.

I. INTRODUCTION
ecent advances in electronics and wireless communication
technologies have accelerated the development and

applications of wireless sensor networks. A wireless sensor
network consists of a large number of tiny, low-cost,
low-power, and mobile sensor nodes, which are capable of
observing the environment, processing data and
communicating each other by radio. Such sensor networks have
been intensively utilized in a wide range of applications such as
medical treatment, unknown environment exploration,
battlefield surveillance, and so on [1].

Sink Node

Sensor Node

Internet
User

Sensing Field

AB
CD

E

Fig. 1 A wireless sensor network

As shown in Fig. 1, the deployed sensor nodes are randomly

scattered in a sensing filed. Each of the deployed sensor nodes
performs tasks assigned previously and communicates each
other to route sensing data back to the sink node (such as the
communication links between sensor nodes A, B, C, D, and E).

Authors are with the Department of Computer Science and Information
Management, Soochow University, Taipei, Taiwan, R.O.C (e-mail:
yckuo@csim.scu.edu.tw).

After receiving the data, the sink node transforms the data into
the useful information and then transmits it to users via
Internet.

Due to the low-cost and the mobile computational capability
of sensor nodes, they are usually deployed in the harsh or the
human-unreachable environment to perform the sensing task.
However, there is much accidental damage in the harsh
environment such as a battlefield explosion or a volcanic
eruption. Because of the environmental interference and the
low-power essence of sensor nodes, sensor nodes are prone to
failure unexpectedly. The faulty node introduces many errors
into the network and corrupts the network. For example, the
faulty node leaves a coverage hole [2] in the sensing field if it
can not perform the sensing task. The sensor network fails to
achieve its objectives when it can not provide the desired
coverage. Moreover, when there is a coverage hole in the
sensor network, the data transmission path through the
coverage hole will be broken and needed to rebuild. The
rebuilding process consumes much power and it is a heavy
burden for sensor nodes due to the low power essence.
Seriously, too more coverage holes may cause not only the
damage of the node connectivity [3], but also the network
partition. Some of the important data may lose and the data
integrity may be greatly degraded upon the network partition.

In order to avoid the network partition and the coverage hole,
it is necessary to find the redundant node to replace the faulty
node as soon as possible. The process is called the sensor
relocation. The sensor relocation consists of two stages. The
first stage is to find the nearby redundant node in the sensor
network. The second stage is to relocate the redundant node to
replace the faulty node. For the first stage, early researches
[4-6] randomly scattered redundant nodes around the sensing
field. It takes a long time for the sensor network to find the
redundant node due to the disorder arrangement of redundant
nodes. Therefore, we propose a fast sensor relocation algorithm
to arrange redundant nodes to form redundant walls. If a sensor
node is faulty, the neighbors of the faulty node will find the
nearest redundant node via redundant walls. For the second
stage, T. Le et al. [6] moved the redundant node to replace the
faulty node directly. Though their method was simple and easy
to implement, it could not satisfy the timely requirement
because of the low speed of the mobile sensor node. Thus, we
utilize the concept of the cascaded movement [4] to replace the
faulty node quickly.

On the other hand, in order to record the precise position of
the faulty node, early researches [4], [5] assumed that the global
position system (GPS) [7] was installed in each sensor node.

A Fast Sensor Relocation Algorithm in Wireless
Sensor Networks

Yu-Chen Kuo and Shih-Chieh Lin

R

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:8, 2009

1978International Scholarly and Scientific Research & Innovation 3(8) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

8,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

56
9.

pd
f

2

However, high costs and high power-consumptions of GPS are
heavy burdens for sensor nodes. Furthermore, due to the
interference of buildings and terrain obstructions, GPS can not
work well in scenes such as the indoor, the seabed, and the
battlefield. However, our fast sensor relocation algorithm can
work well without GPS.

In summary, main contributions of this paper are as follows.
In order to reduce the relocation time, we are the first sensor
relocation algorithm to arrange redundant nodes to solve the
disorder distribution of redundant nodes. Redundant nodes are
arranged to form redundant walls. Redundant walls are
constructed in the position where the average distance to each
sensor node is the shortest. Thus, redundant walls can guide the
sensor node to find the redundant node in the minimum time. In
addition, our fast sensor relocation algorithm can work without
GPS. As shown in simulation results, our algorithm is superior
to T. Le et al.’s algorithm [6] in the time to find the redundant
node, the relocation time to replace the faulty node and the
message complexity.

The rest of this paper is organized as follows. Section 2
summarizes some related works. Section 3 introduces our
system model and assumptions. Then, we propose the fast
sensor relocation algorithm. Section 4 gives the simulation
results for the proposed algorithm. Finally, Section 5 concludes
this paper.

II. RELATED WORK
In this section, we briefly review the related works on the

sensor relocation. As we mentioned in Section 1, we still
separate the sensor relocation into two parts. The first part is to
find the nearby redundant node in the sensor network. The
second part is to relocate the redundant node to replace the
faulty node.

For the problem of finding the nearby redundant node in the
sensor network, G. Wang et al. [4] proposed a grid-quorum
based solution. They separated the sensing field into n×n grids
and chose a grid head in each grid. The grid head was
responsible for monitoring sensor nodes in its grid. If the grid
head found that there was a redundant node in its grid, the grid
head sent the message about the position of the redundant node
to all grid heads in the same column. The grid head, which
received the message, stored the position of the redundant
node. If the grid head found that there was a faulty node in its
grid, the grid head sent the request message to all grid heads in
the same row. Since there must be an intersection in the row
and the column, there must be at least one grid head which
stored the position of the redundant node and received the
request message. Thus, the grid head could find the redundant
node eventually.

X. Li et al. [5] proposed the information-mesh structure
instead of the grid structure. All redundant nodes sent notify
messages to the nearest sensor node. The nearest sensor node
stored the position of the redundant node and sent the message
with the position of the redundant node to neighbor sensor
nodes in the east, the west, the south, and the north. Sensor

nodes, which received the position of the redundant node,
forwarded the message in the same direction until there was no
neighbor sensor node. After all sensor nodes finished
forwarding the message, the information-mesh which stored
the position of redundant nodes was formed. When there was a
faulty node in the network, sensor nodes which found the faulty
node sent request messages to search for the redundant node.
When request messages intersected the information-mesh,
sensor nodes could find the position of the redundant node via
the information-mesh.

In order to record the location information of the redundant
node, researches discussed above assumed that GPS was
installed in each sensor node. However, high costs and high
power-consumptions of GPS are heavy burdens for sensor
nodes. Furthermore, due to the interference of buildings and
terrain obstructions, GPS can not work well in scenes such as
the indoor, the seabed, and the battlefield. Therefore, T. Le et
al. [6] proposed their algorithm without GPS. They assumed
that the low-energy node could broadcast the help message to
search for the redundant node before its energy was exhausted.
The redundant node, which received the help message, sent the
reply message to the low-energy node. The low-energy node
chose the nearest redundant node from many reply messages
and notified the nearest redundant node to replace it. However,
when the sensor node failed accidentally, the faulty node could
not broadcast the help message and choose the nearest
redundant node to replace it.

Thus, we hope our algorithm can work well without GPS and
upon the accidental damage. Besides, researches discussed
above randomly scattered redundant nodes around the sensing
field. It takes a long time for the sensor network to find the
redundant node due to the disorder arrangement of redundant
nodes.

For the problem of relocating the redundant node to replace
the faulty node, we separate related works into two parts. The
first part is the cascaded movement. The second part is the
direct movement.

Researches [4], [5] utilized the way of the cascaded
movement (the shift movement). The cascaded movement
means that the sensor node which found the faulty node builds a
path between the redundant node and the faulty node. In order
to reduce the relocation time, all sensor nodes along the path
shift their position toward the faulty node at the same time. As
shown in Fig. 2, A is the redundant node and D is the faulty
node. When the sensor node C finds that D failed, C searches
for the redundant node. We assume that the sensor node C finds
the redundant node A via the sensor node B, then nodes C, B,
and A will replace the faulty node by the cascaded movement
(When C moves to D, B moves to C, and A moves to B at the
same time).

A

B

C

D

Fig. 2 An example of sensor node movement

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:8, 2009

1979International Scholarly and Scientific Research & Innovation 3(8) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

8,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

56
9.

pd
f

 3

T. Le et al. [6] utilized the way of the direct movement. As
shown in Fig. 2, only the redundant node A moves to replace
the faulty node D along the path. Sensor nodes B and C do not
move. Though the direct movement was simple and easy to
implement, the relocation time was much longer when the
redundant node was far away from the faulty node.

Although researches [4], [5] can reduce the relocation time
by the cascaded movement, they still can not reduce the time to
find the redundant node due to the disorder arrangement of
redundant nodes. Next, we will introduce how our fast sensor
relocation algorithm can reduce the time to find the redundant
node by arranging redundant nodes to form redundant walls.
Besides, we will introduce how our algorithm replaces the
faulty node by the cascaded movement.

III. A FAST SENSOR RELOCATION ALGORITHM

A. System Model and Assumptions
First, we assume that sensor nodes are deployed as the grid

structure and the distance between each sensor node is R (R is
the transmission range of each sensor node), as black nodes
shown in Fig. 3. Redundant nodes are randomly scattered
around the sensing field, as white nodes shown in Fig. 3.
Second, we assume that each sensor node is equipped with the
ultrasonic obstacle-detecting module [8]. Thus, the sensor node
can detect the boundary and become the boundary node if the
distance between the boundary and the sensor node is smaller
than R. Third, we assume that sensor nodes are synchronous
[9], [10]. It means that each sensor node has the same clock
cycle and performs the sensing task at the same time. Besides,
we assume that sensor nodes can detect the direction by the
electronic compass and each sensor node knows the length and
the width of the sensing field. Moreover, we assume that sensor
nodes can detect relative distances and angles to estimate the
relative location information to nearby nodes [11-13]. Finally,
in order to find the faulty node in time, sensor nodes
periodically send hello messages to neighbor sensor nodes to
verify whether they are alive. Next, we will introduce our fast
sensor relocation algorithm in two parts. The first part is the
redundant nodes arrangement algorithm. The second part is the
faulty nodes replacement algorithm.

R

R

Fig. 3 The System Model (The black square stands for the boundary)

B. Redundant nodes arrangement algorithm
In order to find the redundant node as soon as possible, the

redundant nodes arrangement algorithm arranges the deployed
redundant nodes to the specific position to form redundant
walls. In general, if the distance between redundant walls and
the faulty node is shorter, the time to find the redundant node
will be less. In addition, since each sensor node in the sensor
network may fail, we desire to arrange redundant nodes to a
proper position where the average distance from the redundant
node to each sensor node is the shortest.

Fig. 3 is the 2-D scenario. For easy understanding, we
consider the 1-D scenario first. As shown in Fig. 4, there are n
sensor nodes in a row and the position of each sensor node is
from 1 to n. The distance between each sensor node is R, and
we deploy the redundant node in the position x.

x2 nn-11
������ ������

Deploy the redundant node

R R
Fig. 4 Deploy the redundant node in the position x

Let D(x) be the average distance from the redundant node to

each sensor node. Then, we obtain

() () () ()[]RxnRxnRxRx
n

xD −+−−++++−+−= 1...0...211)(

To minimize D(x), we have

⎥⎥
⎤

⎢⎢
⎡ +

=
2

1nx or ⎥⎦
⎥

⎢⎣
⎢ +

2
1n

Since ⎥⎥
⎤

⎢⎢
⎡ +

=
2

1nx or ⎥⎦
⎥

⎢⎣
⎢ +

2
1n stands for the center position of

those n sensor nodes, we can conclude that the average distance
from the redundant node to each sensor node is the shortest
when we arrange the redundant node in the center position.

Therefore, if the redundant nodes arrangement algorithm can
arrange redundant nodes to the center of the sensing field, the
time to find the redundant node will be the shortest. After
discussing the 1-D scenario in Fig. 4, we focus on the 2-D
scenario in Fig. 3. We consider the 2-D scenario as two 1-D
scenarios (one is row and the other is column). Thus, we hope
that the redundant nodes arrangement algorithm can arrange
half of redundant nodes to the center of the row and arrange the
other half to the center of the column. After that,
cross-redundant walls are formed in the center, as shown in Fig.
6. Next, we will introduce the following two steps of the
redundant nodes arrangement algorithm. The first step is (1)
Asking the boundary distance. The second step is (2) Forming
the redundant wall.

1) Asking the boundary distance
First, each redundant node sends the askBoundary message

to the nearest sensor node among its neighbor nodes to ask for
the boundary distance. The boundary distance stands for the
distance from the redundant node to the boundary. The

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:8, 2009

1980International Scholarly and Scientific Research & Innovation 3(8) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

8,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

56
9.

pd
f

 4

redundant node can use the boundary distance to observe its
position without using GPS. The nearest sensor node
propagates the askBoundary message to its neighbor sensor
node in one of the four directions (the east, the west, the south,
or the north) according to ID of the redundant node. If ID of the
redundant node is odd, the nearest sensor node will propagate
the askBoundary message to the north or the south. Otherwise,
the nearest sensor node will propagate the askBoundary
message to the east or the west. The sensor node which receives
the askBoundary message counts the boundary distance and
forwards the askBoundary message to the next node in the
same direction. Finally, after the boundary node receives the
askBoundary message, the boundary node sends the
replyBoundary message with the boundary distance back to
the redundant node.

For example, as shown in Fig. 5, we assume that ID of the
redundant node A is odd and ID of the redundant node B is
even. The redundant node A sends the askBoundary message
to the nearest sensor node C. Since ID of A is odd, C propagates
the askBoundary message to the north or the south (Fig. 5
assumes that C propagates the askBoundary message to the
north). The askBoundary message propagates to the next node
in the same direction until the boundary node receives it. After
the boundary node D receives the askBoundary message, D
sends the replyBoundary message with the boundary distance
back to A. After A receives the replyBoundary message, A can
use the boundary distance to observe its position. In the same
way as A, the redundant node B sends the askBoundary
message to the nearest sensor node E. Since ID of B is even, E
propagates the askBoundary message to the east or the west
(Fig. 5 assumes that E propagates the askBoundary message to
the east). After the boundary node F receives the askBoundary
message, F sends the replyBoundary message back to B such
that B can observe its position.

A

B

C

D

E F

Fig. 5 Asking the boundary distance

2) Forming the redundant wall

After the redundant node receives the boundary distance, the
redundant node moves to the center of the sensing field
according to its ID. If its ID is odd, the redundant node moves
to the center in the north-south direction. If its ID is even, the
redundant node moves to the center in the east-west direction.
If there are a large number of redundant nodes, the center of the

sensing field will gather a lot of redundant nodes. If there are
enough redundant nodes in the sensing field, those redundant
nodes will form the redundant wall in the center.

The redundant wall will guide sensor nodes to find the
redundant node. Since the redundant wall is formed, the sensor
node can find the redundant node easily by sending the
message to one of the four directions. When the message
intersects the redundant wall, the sensor node can find the
redundant node via the redundant wall.

However, in fact, redundant nodes in the center may not be
enough to form a seamless redundant wall, which can guide all
sensor nodes from anywhere to find the redundant node. Thus,
after redundant nodes arrive the center of the sensing field,
redundant nodes will send messages to notify neighbor sensor
nodes the existence of redundant nodes.

 Specifically, redundant nodes which move to the center in
the north-south direction will send messages to notify neighbor
sensor nodes in the east-west direction. Neighbor sensor nodes
will propagate messages in the east-west direction until
boundary nodes receive them. On the contrary, redundant
nodes which move to the center in the east-west direction send
messages to notify neighbor sensor nodes in the north-south
direction accordingly. After all redundant nodes send messages
to notify neighbor sensor nodes, seamless cross-redundant
walls will be formed in the center of the sensing field.

For example, as shown in Fig. 6, the redundant node A
moves to the center in the north-south direction since ID of A is
odd. After A arrives the center of the sensing field, A sends the
message to notify neighbor sensor nodes in the east-west
direction to form the redundant wall. In the same way as A, the
redundant node B moves to the center in the east-west direction
since ID of B is even. After B arrives the center of the sensing
field, B sends the message to notify neighbor sensor nodes in
the north-south direction to form the redundant wall. After all
redundant nodes send messages to notify their neighbor sensor
nodes, seamless cross-redundant walls will be formed in the
center of the sensing field.

A

B

Fig. 6 Forming cross-redundant walls

In different applications, we may hope to arrange redundant

nodes to form different kinds of redundant walls, such as
3-redundant walls in Fig. 7. As shown in Fig. 7, redundant
nodes are arranged in the north-south direction to form the 1st,

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:8, 2009

1981International Scholarly and Scientific Research & Innovation 3(8) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

8,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

56
9.

pd
f

 5

2nd, and 3rd redundant walls in the one-fourth, the two-fourths,
and the three-fourths of the sensing field. In general, if the
number of redundant walls increases, sensor nodes can find the
redundant node more quickly. Thus, we separate redundant
nodes into n groups to form n redundant walls. Each redundant
node moves to the [(ID mod n)+1]th redundant wall according
to its ID. For example, as shown in Fig. 7, we assume that ID of
redundant nodes A, B, and C are 7, 5, and 9, respectively. A
moves to the [(7 mod 3) +1]th redundant wall (i.e., the 2nd
redundant wall). B moves to the [(5 mod 3) +1]th redundant wall
(i.e., the 3rd redundant wall). C moves to the [(9 mod 3) +1]th
redundant wall (i.e., the 1st redundant wall). After all redundant
nodes move to those redundant walls, 3-redundant walls are
formed in the sensing field.

A

B

C

1st redundant wall

2nd redundant wall

3rd redundant wall

Fig. 7 Forming 3-redundant walls

As we mentioned before, the redundant nodes arrangement

algorithm can arrange redundant nodes into different kinds of
redundant walls according to the application. Even if the
number of sensor nodes increases or the deployment status
changes, our algorithm can adjust redundant walls easily to
reduce the time to find the redundant node. The redundant
nodes arrangement algorithm is described in Fig. 8.

Notations�
d: the direction of the packet
n: the number of redundant walls
td: the distance from the redundant node to the boundary

Messages�
askBoundary: ask the nearest sensor node to calculate td
replyBoundary: reply the redundant node td

At redundant node Sr
set td = 0 and send askBoundary� Sr, Sn, d, td� to the nearest
sensor node Sn
if (receive replyBoundary� Sr, Sn, d, td�) {
move to the [(ID mod n)+1]th redundant wall
according to its position to the boundary, td

send messages to neighbor sensor nodes in the
[(ID mod n)+1]th redundant wall

}

At sensor node Si
if (receive askBoundary� Sr, Sn, d, td�) {
 if (Si is the boundary node)

td = td + the distance from Si to the boundary
if (Si == Sn)

send replyBoundary� Sr, Sn, d, td� to Sr
 else

send replyBoundary� Sr, Sn, d, td� to the next node in
the opposite direction

 else
td = td + R

if (Si == Sn)
propagate askBoundary� Sr, Sn, d, td� to the next node

in one of the four directions according to ID of Sr
 else
 forward askBoundary� Sr, Sn, d, td� to the next node in

the same direction
}
if (receive replyBoundary� Sr, Sn, d, td�) {
if (Si == Sn)
send replyBoundary� Sr, Sn, d, td� to Sr

 else
forward replyBoundary� Sr, Sn, d, td� to the next node in the
same direction

}
Fig. 8 The redundant nodes arrangement algorithm

C. Faulty nodes replacement algorithm
The procedure of the faulty nodes replacement algorithm is

described as follows. All sensor nodes periodically send hello
messages to neighbor sensor nodes to verify whether they are
alive. If one of the neighbor sensor nodes did not reply, other
neighbor sensor nodes conceive that the sensor node which did
not reply is failed. To replace the faulty node, the sensor node
which found the faulty node performs the following two steps.
The first step is (1) Finding the redundant node. The second
step is (2) Replacing the faulty node.

1) Finding the redundant node
For simplicity, we use the found-faulty node to represent the

sensor node which found the faulty node. In our scenario,
found-faulty nodes are neighbor sensor nodes which are 1-hop
distance to the faulty node, i.e., the north, the south, the east,
and the west of the faulty node. Four found-faulty nodes send
askRedundant messages to search for the redundant node in
the opposite direction of the faulty node. If the node which
received the askRedundant message has the information of the
redundant node, it will send the replyRedundant message with
the information of the redundant node (i.e. hop counts to the
redundant node) to the found-faulty node. Otherwise, it will
propagate the askRedundant message to the next node in the
same direction until the information of the redundant node is
found.

2) Replacing the faulty node
After the found-faulty node receives the information of the

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:8, 2009

1982International Scholarly and Scientific Research & Innovation 3(8) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

8,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

56
9.

pd
f

6

redundant node, it moves to the position of the faulty node to
exchange its hop counts to the redundant node with other
found-faulty nodes. The found-faulty node with the smallest
hop counts replaces the faulty node. Other found-faulty nodes
move back to their original position. If hop counts to the
redundant node are equal, the found-faulty node with the
smallest ID will replace the faulty node. When the found-faulty
node moves to replace the faulty node, the position of the
found-faulty node becomes a coverage hole. Once the
following node detects the coverage hole caused by the
found-faulty node, the following node will prepare to move to
repair the coverage hole. However, the found-faulty node may
move back to the original position if it fails to replace the faulty
node. It will cause the oscillation between the found-faulty
node and the following node. The oscillation will waste the
power of sensor nodes. To avoid the oscillation, the following
node will query the found-faulty node after a time period. If the
following node does not receive the reply from the found-faulty
node, it means that the found-faulty node has successfully
replaced the faulty node. After that, following nodes move to
repair the coverage hole by the cascaded movement.

For example, as dashed arrows shown in Fig. 9, sensor nodes
C, D, E, and F send askRedundant messages to search for the
redundant node in the opposite direction of the faulty node. D
and E do not move to replace the faulty node since they can not
find the information of the redundant node. C receives the
information of the redundant node H from the sensor node I. F
stores hop counts to the redundant node G since F is on the
redundant wall. Thus, as shown in Fig. 10, C and F move to the
position of the faulty node to replace the faulty node. As shown
in Fig. 11, C replaces the faulty node and F moves back to the
original position since hop counts between C and H is smaller
than hop counts between F and G. After that, following nodes I
and H move to repair the coverage hole by the cascaded
movement. The faulty nodes replacement algorithm is
described in Fig. 12.

C

D

E

FG

H

I

Fig. 9 Finding the redundant node

C

D

E

FG

H

I

Fig. 10 C and F compete to replace the faulty node

C

D

E

FG

H

I

Fig. 11 I and H repair the coverage hole by the cascaded movement

Notations�
d: the direction of the packet
hc: hop counts from the found-faulty node to the

redundant node

Messages�
askRedundant: search the information of the redundant node
replyRedundant: reply the sensor node its hop counts to the

redundant node

At sensor node Si
send hello messages to neighbor sensor nodes
receive replies of hello messages from neighbor sensor nodes

if (there is no reply about Sf in this round) {
 Sf is assigned to be the faulty node
 Si is assigned to be the found-faulty node
set hc = 0 and send askRedundant� Si, d, hc� to the next node
in the opposite direction of Sf

}
if (receive askRedundant� Sj, d, hc�) {
 if (Si has hop counts information hci to the redundant node)

hc = hc + hci
send replyRedundant� Sj, d, hc� to the next node in the
opposite direction

 else
hc++
forward askRedundant� Sj, d, hc� to the next node in the
same direction

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:8, 2009

1983International Scholarly and Scientific Research & Innovation 3(8) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

8,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

56
9.

pd
f

 7

}
if (receive replyRedundant� Sj, d, hc�) {
 forward replyRedundant� Sj, d, hc� to the next node in the
same direction

}
if (receive replyRedundant� Si, d, hc�) {
if (the position of Sf is not replaced by other nodes)
 move R to replace the faulty node Sf
 following nodes move to repair the coverage hole by the

cascaded movement
}

Fig. 12 The faulty nodes replacement algorithm

IV. SIMULATION

A. Simulation environment
In the simulation, our algorithm is implemented using the

ns-2 simulator (version 2.27). Sensor nodes are deployed as the
grid structure in a 200m×200m square region and redundant
nodes are randomly scattered around the sensing field. The
distance and the communication range of each sensor node are
both 20m. The speed of the mobile sensor node is 2.5 m/s.

In order to know the effectiveness in different network sizes,
we simulate our algorithm in three scenes. The first scene is that
25 sensor nodes are deployed as 5×5 grid and 5 redundant
nodes are randomly scattered around the sensing field. The
second scene consists of 49 sensor nodes (7×7 grid) and 7
redundant nodes. The third scene consists of 81 sensor nodes
(9×9 grid) and 9 redundant nodes.

Since our algorithm can form different kinds of redundant
walls according to the application, we form three kinds of
redundant walls, which are cross, 3, and 5-redundant walls to
evaluate the effectiveness of different kinds of redundant walls.
Besides, we compare our algorithm with T. Le’s algorithm in
[5]. We measure the performance of both algorithms by four
metrics: (1) the time to find the redundant node, (2) the
relocation time, (3) the message complexity, and (4) the
moving distance to replace the faulty node.

B. Simulation results

0

0.1

0.2

0.3

0.4

0.5

0.6

(25,5) (49,7) (81,9)
(Number of Sensor Nodes , Number of Redundant Nodes)

Ti
m

e
to

 fi
nd

 th
e

re
du

nd
an

t n
od

e
(s

)

T. Le's algorithm
cross-redundant walls
3-redundant walls
5-redundant walls

Fig. 13 Time to find the redundant node (s)

As shown in Fig. 13, no matter what kinds of redundant

walls are, our algorithm spends less time to find the redundant
node than T. Le’s algorithm. This is because our algorithm
arranges redundant nodes to form redundant walls, whereas T.

Le randomly scatters redundant nodes around the sensing field.
Since redundant walls are constructed in the position where the
average distance to each sensor node is the shortest, each sensor
node can find the redundant node more quickly from nearby
redundant walls. Besides, in Fig. 13, we can observe that T.
Le’s algorithm spends more time to find the redundant node
when the network size increases. The reason is that the distance
from the redundant node to each sensor node becomes longer
when the network size increases. Thus, their algorithm needs
more time to find the redundant node.

5

15

25

35

45

(25,5) (49,7) (81,9)

(Number of Sensor Nodes , Number of Redundant Nodes)
Re

lo
ca

tio
n

Ti
m

e
(s

)

T. Le's algorithm
cross-redundant walls
3-redundant walls
5-redundant walls

Fig. 14 Relocation time (s)

As shown in Fig. 14, no matter what kinds of redundant

walls are, our algorithm outperforms T. Le’s algorithm in the
relocation time. Besides, the relocation time of T. Le’s
algorithm increases dramatically as the network size increases.
The reason is that T. Le’s algorithm replaces the faulty node by
the direct movement, whereas our algorithm replaces the faulty
node by the cascaded movement. When the network size
increases, the distance between the redundant node and the
faulty node is longer. As for the direct movement, the
redundant node has to move a long distance to replace the
faulty node alone. As for the cascaded movement, all nodes
along the path move at the same time. That is, the long distance
is shared by all nodes along the path. Thus, the relocation time
is significantly reduced in our algorithm. As cross, 3, and 5
redundant walls shown in Fig. 14, 5-redundant walls
outperform 3-redundant walls and 3-redundant walls
outperform cross-redundant walls. This is because the more
redundant walls will distribute redundant nodes more and
shorten the distance from the faulty node to the redundant node.
Thus, 5-redundant walls perform the best in the relocation time.

M
es

sa
ge

 C
om

pl
ex

ity

0

100

200

300

400

(25,5) (49,7) (81,9)
(Number of Sensor Nodes , Number of Redundant Nodes)

T. Le's algorithm
cross, 3, 5-redundant walls

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:8, 2009

1984International Scholarly and Scientific Research & Innovation 3(8) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

8,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

56
9.

pd
f

 8

Fig. 15 Message complexity

Since the message complexity of cross, 3, and 5-redundant

walls are almost the same, we use one line to represent them.
The message complexity stands for the message to arrange
redundant nodes and to replace the faulty node. As shown in
Fig. 15, the message complexity of our algorithm is less than
that of T. Le’s algorithm. The reason is that T. Le broadcasts
messages to search for the redundant node, whereas our
algorithm only sends messages to one of the four directions due
to the existence of redundant walls.

0

100

200

300

400

500

1 3 5
Number of Faulty Nodes

M
ov

in
g

D
ist

an
ce

s (
m

)

T. Le's algorithm
cross-redundant walls
3-redundant walls
5-redundant walls

Fig. 16 Moving distances (m)

As the moving distance shown in Fig. 16, T. Le’s algorithm

is better as the number of faulty nodes increases. This is
because their algorithm assumed that the faulty node could
broadcast the help message and choose a redundant node to
replace it. However, when the sensor node failed accidentally,
the accidental faulty node could not broadcast the help message
to redundant nodes. Thus, the accidental faulty node would
leave a permanent coverage hole. The permanent coverage hole
could not be repaired even the sensor network still had
redundant nodes. In our algorithm, even if the sensor node fails
accidentally, found-faulty nodes can coordinate with each other
and find the proper redundant node to replace the faulty node.
Thus, our algorithm can work well upon the accidental node
failure. Though we take more distances to coordinate between
found-faulty nodes, we can solve the accidental node failure
problem which they can not.

V. CONCLUSION
In this paper, we propose a fast sensor relocation algorithm

to arrange redundant nodes to form redundant walls without
GPS. Redundant walls are constructed in the position where the
average distance to each sensor node is the shortest. Thus,
redundant walls can guide the sensor node to find the redundant
node in the minimum time. When the sensor node fails, our
algorithm replaces the faulty node by the cascaded movement.
Simulation results show that our algorithm can find the proper
redundant node in the minimum time and reduce the relocation
time with low message complexity.

ACKNOWLEDGMENT
This research was supported in part by the National Science

Council of the Republic of China under contract NSC
97-2221-E-031-001.

REFERENCES
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey

on Sensor Networks,” IEEE Communication. Magazine, pp. 102-114,
August 2002.

[2] N. Ahmed, S. S. Kanhere and S. Jha, “The Holes Problem in Wireless
Sensor Networks� A Survey,” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 9, no. 2, pp. 4-18, April 2005.

[3] A. Ghosh and S. K. Das, “Coverage and connectivity issues in wireless
sensor networks� A survey,” Pervasive and Mobile Computing, vol. 4,
no. 3, pp. 303-304, 2008.

[4] G. Wang, G. Cao, T. Porta, and W. Zhang, “Sensor Relocation in Mobile
Sensor Networks,” Proceedings of IEEE INFOCOM, March 2005.

[5] X. Li, N. Santoro, and I. Stojmenovic, “Mesh-Based Sensor Relocation
for Coverage Maintenance in Mobile Sensor Networks,” Proceedings of
the 4th Int. Conf. on Ubiquitous Intelligence and Computing (UIC) (LNCS
4611), pp. 696-708, 2007.

[6] T. Le, N. Ahmed, S. Jha, “Location-free Fault Repair in Hybrid Sensor
Networks,” Proceedings of the first ACM Int. Conf. Integrated Internet Ad
Hoc and Sensor Networks, vol. 138, no. 23, May 2006.

[7] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global
Positioning System: Theory and Practice, Fourth Edition, Springer
Verlag, 1997.

[8] J. Borenstein and Y. Koren, “Obstacle Avoidance with Ultrasonic
Sensors,” IEEE Journal of Robotics and Automation, vol. 4, no. 2, pp.
213-218, 1988.

[9] Q. Li and D. Rus, “Global Clock Synchronization in Sensor Networks,”
IEEE Transactions on Computers, vol. 5, no. 2, February 2006.

[10] B. Sundararaman, U. Buy, and AD. Kshemkalyni, “Clock
Synchronization for Wireless Sensor Networks: A Survey,” Ad-Hoc
Networks, vol. 3, no. 3, pp. 281-323, May 2005.

[11] D. Niculescu and B. Nath, “Ad Hoc Positioning System (APS) Using
AoA,” Proceedings of IEEE INFOCOM, 2003.

[12] J. Ash and L. Potter, “Sensor network localization via received signal
strength measurements with directional antennas,” Proceedings of the
Forty-Second Annual Allerton Conference on Communication, Control,
and Computing, pp. 1861–1870, September 2004.

[13] N. Patwari, A.O. Hero III, J. Ash, R.L. Moses, S. Kyperountas, and N.S.
Correal, “Locating the Nodes,’’ IEEE Signal Processing Magazine, vol.
22, no. 4, pp. 54–69, July 2005.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:8, 2009

1985International Scholarly and Scientific Research & Innovation 3(8) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

8,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

56
9.

pd
f

