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Abstract—The near-field synthetic aperture radar (SAR) imaging
is an advanced nondestructive testing and evaluation (NDT&E)
technique. This paper investigates the complex-valued signal
processing related to the near-field SAR imaging system, where
the measurement data turns out to be noncircular and improper,
meaning that the complex-valued data is correlated to its complex
conjugate. Furthermore, we discover that the degree of impropriety
of the measurement data and that of the target image can be highly
correlated in near-field SAR imaging. Based on these observations, A
modified generalized sparse Bayesian learning algorithm is proposed,
taking impropriety and noncircularity into account. Numerical results
show that the proposed algorithm provides performance gain, with the
help of noncircular assumption on the signals.

Keywords—Complex-valued signal processing, synthetic aperture
radar (SAR), 2-D radar imaging, compressive sensing, Sparse
Bayesian learning.

I. INTRODUCTION

NEAR-FIELD synthetic aperture radar (SAR) imaging

techniques are derived from millimeter-wave and

microwave holography that utilizes complex-valued data

measured over a two-dimensional aperture to reconstruct a

focused image of the target [22]. Near-field SAR imaging

is well suited for the nondestructive testing and evaluation

(NDT&E) since the operating millimeter-wave and microwave

are non-ionizing, readily penetrate non-metal surface material

(e.g. composites) and interact with the inner structure to render

high-quality imagery [15].

However, for a typical near-field monostatic SAR system,

in order to achieve high spatial resolution, it is demanded

to scanning the target scene at high sampling rates in both

frequency and space domains to satisfy the Shannon-Nyquist

sampling criterion [5], [25]. Therefore, the data acquisition

process will be time-consuming. For instance, the conventional

uniform sampling requires about one hour to scan a 120

× 180 mm2 area at 2-mm step size. Significant amount

of time is wasted in moving and pinpointing the antenna

probe. By contrast, the scanning procedure is quite fast,

hence it is usual practice that near-field monostatic SAR

imaging system operates multi-frequencies scanning rather

than single-frequency scanning.

The compressive sensing (CS) methodology, received much

attentions in recent years [6], [20], have shown great potential

in reducing the measurement time via randomly sensing a

very limit fractional number of spatial points in the entire
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scanning plane. In this paper, we consider the near-field

SAR imaging problem in the CS framework. As one of

the state-of-the-art CS algorithms, the approximate message

passing (AMP) algorithm and its variants have shown to be

effective and efficient [13], [17], [19]. In general, advantages

of the AMP algorithms include: 1) encode prior distribution

flexibly; 2) provide the uncertain degrees of the estimates [2];

3) avoid matrix inversion [9].

The measurement data in near-field SAR system

contains phase and amplitude information, is expressed

as complex-valued. To consider CS algorithms for such

complex-valued signals, literature fall into two categories:

1) by decoupling real and imaginary parts or by simply

using amplitude constraints [10]; 2) by applying smoothness

constraint on phase as well as amplitude [26].

The latter category suggests a smoothing constraint on the

phase information, aims mainly to enhance robustness and

deal with discontinuities in data acquisition [8]. The work in

[8], [24], [26], [11] have shown comprehensive performance

improvement by using the smoothing prior information.

For the former category, there are two major disadvantages.

First, the rearranged real-valued data is twice the scale of the

original complex-valued data in the processing, and similarly,

the sensing matrix becomes four times of the original one

[7], which increase the computational complexity significantly.

Second, as reported in [23], [16], in many application the

real and imaginary parts tend to be either zero or non-zero

simultaneously, so decomposition without considering such

extra information may lead to performance degradation.

Modifications has been made in [23], where the real and

imaginary components are treated jointly.

In this paper, we further extend the work in [23] by

considering correlation between the real and imaginary parts,

in terms of covariance and pseudo-covariance (also called

complementary covariance). The idea comes from statistical

processing of complex-valued random variables [21], which

has two key ingredients: 1) full statistical characterization 1 of

complex-valued data; 2) optimization over complex parameters
2 [16].

Based on the observation that the near-field SAR signal

has (high level) non-circular or improper nature (details are

1Impropriety and non-circularity of the complex-valued data (or random
processes) are taken into account, the definition of which are given in Section
III.

2For necessary tools including widely linear transformations, augmented
statistical descriptions, and Wirtinger calculus, we refer the reader to [21]
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given in Section III), especially in near range scanning setting,

the proposed algorithm considering impropriety (second-order

non-circularity) provides performance gain. Note that statistics

(such as non-circular and second-order non-circular) are

correspond to (stationary) random processes, and the multi

frequencies collection in our application can provide sufficient

data (as samples of a random variable) for calculating a

relatively stationary statistics (details are given in Section III).

The organization of the paper is as follows. In Section II,

we present brief review of the near-field SAR holographic

image reconstruction. In Section III, We take a close look at

second-order non-circular of the near-field SAR measurement

data. In Section IV, the proposed complex-valued generalized

sparse Bayesian learning algorithm is presented. In Section V,

numerical experiment to compare the performance of different

CS algorithms is conducted. And Section VI concludes the

paper.

II. NEAR-FIELD SAR IMAGING

A. Two-Dimensional Near-Field SAR Image Reconstruction

The measurement configuration of the near-field SAR

imaging system is shown in Fig. 1. The coordinate of antenna

is identified by s(x′, y′, z0). Data acquisition is performed by

moving the antenna probe in uniform step on the scanning

(aperture) plane. The target is placed at the distance z0 from

the scanning plane, of which a general point is identified

as (x, y, z). The target is assumed to be flat, parallel to

the (x, y, z0)-plane, and fully characterized by the reflective

function f(x, y, z), which is defined as the ratio of reflected

field to incident field [22]. Our goal is to reconstruct the

reflective function (i.e. the target image) from the reflected

measurement data.

y

z

x

antenna probe
(xx ,y ,z0)

target point
(x, y, z=0)

target

scanning plane

Fig. 1 Data (or reflected wave) acquisition model of near-field SAR imaging
system

We begin with the response at antenna probe, which is

the superposition of reflection from each point on the target

multiplied by the round-trip phase to that point [22]:

s (x′, y′) =
∫∫

f(x, y, z)︸ ︷︷ ︸
target

e−j2k
√

(x−x′)2+(y−y′)2+z2
0︸ ︷︷ ︸

spherical wave emanating from (x′, y′)

dxdy

(1)

where k = ω
c denotes the wavenumber, ω and c

denote temporal angular frequency and the speed of light,

respectively. The amplitude decay with range is neglectable

in the near-field scenario.

The spherical wave can be decomposed into a superposition

of plane-wave components

e−j2k
√

(x−x′)2+(y−y′)2+z2

=

∫∫
ejk

′
x(x

′−x)+jk′
y(y

′−y)+jkzz0dkx′dky′
(2)

where kx′ and ky′ are variables in Fourier domain

corresponding to x′ and y′ respectively.

By using the definition of 2-D Fourier transform, the

expression in (1) can be reorganized as [22]

s (x′, y′) =
∫∫ [∫∫

f (x, y, z0) e
−j(kx′x+ky′y)dxdy

]
︸ ︷︷ ︸

2D Fourier Transform of f(x,y,z0)

× ej(kx′x′+ky′y′+kzz0)dkx′dky′

(3)

The distinction between the primed and unprimed

coordinate systems is dropped since the coordinate systems

coincide [22]. Then the inversion for image then gives

f(x, y) = F−1
2D

[F2D[s(x, y)]e
−jkzz0

]
. (4)

Follow dispersion relation for electromagnetic plane waves

k2x + k2y + k2z = (2k)2 (5)

kz =
√

4k2 − k2x − k2y. (6)

Finally, the reconstruction reads

f(x, y) = F−1
2D

[
F2D{s(x, y)}e−jz0

√
4k2−k2

x−k2
y

]
(7)

and is referred to as forward 2-D SAR transform [5], which

converts the reflected data to the image, and the reverse

procedure

s(x, y) = F−1
2D

[
F2D{f(x, y)}ejz0

√
4k2−k2

x−k2
y

]
(8)

is called reverse 2-D SAR transform [4].

B. Compressed Sensing SAR Image Reconstruction

In order to introduce the underdetermined linear

measurement model for the near-field SAR imaging in

a concise manner, we first reformulate the forward 2-D SAR

transform in (7) as

Φ2 = ΦH
2DFT × (E ◦Φ2DFT) , (9)

where ◦ denotes Hadamard product and (·)H denotes

transposition. ΦH
2DFT and Φ2DFT denote the 2-D Fourier

transform and the inverse 2-D Fourier transform in matrix

format, respectively. And the reverse 2-D SAR transform in

(8) can be expressed as ΦH
2 , based on the fact that Φ2DFT is

orthogonal.
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Then, we use matrix Φ1 is to indicate the random sampling

positions of the antenna probe is constructed with randomly

distribution of the zero/one entries.

Next, we use Φ2 to denote the transform that projects

underlying target image to a wavelets domain. An orthogonal

(or bi-orthogonal) wavelets will be a convenient choice to

facilitate the inverse process. In this paper, the Symlet wavelets

transform with eight vanishing moments is chosen as preset.

To summarize, with the overall sensing matrix composed of

Φ = Φ1 ◦ΦH
2 ΦH

3 , the sparse recovery problem is represented

as

y = Φx+ n, (10)

where y, x and n denote the measurement data, the underlying

wavelets coefficients of the target image, and the Gaussian

measurement noise, respectively.

III. COMPLEX-VALUED STATISTICS

In this section, we investigate a real-world experiment where

improper (second-order non-circular) measuremnt data arises,

and present two observations:

1) The complex-valued reflected data are improper (or

second-order non-circular);

2) The degree of non-circularity of the reflected data is

approximately equal to that of the target image.

A. The Improper Measurement Data

(a) (b)

Fig. 2 (a) Photo of the sample before paint. (b) Photo of the specimen after
paint

The experiment was conducted on a corrosion-under-paint

sample operating at microwave frequencies uniformly spaced

in 18 to 26.4 GHz (K-band), with step size 0.084 GHz (Nω

= 101). As shown in Fig. 2, the area of steel sheet under

corrosion was about 32mm×32mm with thickness of 0.08mm,

then the common paint with thickness of 0.6mm was sprayed

over the steel sheet as uniformly as possible. The sample was

placed below the antenna probe at a depth of zt = −1mm,

and an area of 64mm × 64mm was scanned with a uniform

measurement grid of 2mm in both x- and y-directions and the

fully sampled raw data had a dimension of 32× 32.

We visualize the measurement data operated at frequency

19.596 GHz in Fig. 3. It is obvious that there is a strong

negative correlation between the real and the imaginary part

of the raw data. And measurement data collected with respect

to other frequencies share the similar pattern.

In order to measure the degree of the correlation, we

introduce the concept of pseudo covariance, which appears

frequently in complex-valued random signal processing [21].

To calculate the pseudo covariance, we collect the

complex-valued scalar located at (x, y, z) from each frequency

layer, shown in Fig. 4 (a). These scalars {a1 + ib1, a2 +
ib2, ..., a101 + ib101}T can be seen as samples of a

complex-valued random variable xdata.

These samples are reflected data received at the same

location, which are expected to share similar (or same)

physical interpretations; hence random variable xdata can

be assumed to have stationary statistics. In that sense, the

covariance function c(k,m) of xdata is defined as [1]

c(k,m) = E {xdata(k +m)x∗
data(k)}−

E{xdata(k +m)}E {x∗
data(k)}

(11)

where E {xdata(k +m)x∗
data(k)} is the correlation function,

and x∗
data(k) is the conjugate transposition of xdata(k). To

fully characterize the second-order statistics, we follow the

definition of pseudo covariance function in [1], given by

c̃(k,m) = E{xdata(k +m)xdata(k)}−
E{xdata(k +m)}E{xdata(k)}.

(12)

As shown in Fig. 4 (b), the pseudo covariance function does

not vanishes for all pairs (k,m), therefore, random variable

xdata is identified to be improper or second-order non-circular

[1]. Note that the measurements at other location have similar

statistics.

B. The Pseudo Covariances Are Highly Correlated

In this subsection, we additionally bring the target images

into discussion, which are reconstructed from full-sampled

reflected data via the forward 2-D SAR transform in Section

II.

We assign a random variable xdata to represent a general

point in the measurement data, with sample set {a1+ib1, a2+
ib2, ..., a101+ib101}, in the same way as the above subsection;

And likewise, we assign a random variable ximage to that of the

target images, with sample set {c1 + id1, c2 + id2, ..., c101 +
id101}.

As shown in Figs. 5 (a) and (b), We pick a scalar at a typical

location (e.i. index NO.692), of both target image and reflected

data, as an illustration for calculating the pseudo covariance.

Follow the definition in [1], the augmented covariance

matrix of a random vector or variable x is

Cxx = E
{
xxH

}
=

[
Cxx C̃xx

C̃∗
xx C∗

xx

]
. (13)

The north-west block of matrix Cxx is the covariance matrix

is the usual (Hermitian) covariance matrix

Cxx = E
{
xxH

}
= Cxrxr

+Cxixi
+ j

(
CT

xrxi
−Cxrxi

)
(14)

with Cxrxr = E
{
xrx

T
r

}
, Cxrxi = E

{
xrx

T
i

}
, and Cxxi

=

E
{
xix

T
i

}
. The north-east block is the pseudo covariance

matrix

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:13, No:5, 2019 

325International Scholarly and Scientific Research & Innovation 13(5) 2019 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n 

E
ng

in
ee

ri
ng

 V
ol

:1
3,

 N
o:

5,
 2

01
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
10

39
6.

pd
f



(a) (b)

(c)

-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
x

r

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

x i

(d)

Fig. 3 Reflected data of a single-frequency measurement (19.26 GHz) is collected in a 2-D matrix, dimension of which is 32×32. (a) The real parts. (b) The
imaginary parts. (c) The reflected data is reshaped as a 1024×1 vector, the real and imaginary parts of which are plotted side-by-side. (d) Scatter plot of the

1024 complex-valued data, with ”xr” being the real axis and ”xi” being the imaginary axis

(x,y,z)
a1 + i*b1 

a2 + i*b2 

a101 + i*b101 

.

.

.

a1 + i*b1 

a2 + i*b2 

a101 + i*b101 

.

.

.

(x,y,z)
a1 + i*b1 

a2 + i*b2 

a101 + i*b101 

.

.

.

(((x y(x,y(x,y(x,y(x,y(x,yy,z),z),z)z),z),(x y(x,y(x,y(x,y(x,y(x,y,z),z),z)z),z),(x,y,z)
a1 + i*b1 

a2 + i*b2 

a101 + i*b101 

.

.

.

(Nw=101)

(a)

(b)

Fig. 4 (a) The multi-frequencies reflected data set is consist of data
collected with Nω = 101 different scanning frequency, ranging from 18
GHz to 26.4 GHz; And the complex scalar at location (x,y,z) is extracted

from each frequency layer, to build a sample set for the particular location.
(b) The covariance function and the pseudo covariance function is calculated

based on the sample set {a1 + ib1, a2 + ib2, ..., a101 + ib101}

C̃xx = E
{
xxT

}
= Cxrxr

−Cxixi
+ j

(
CT

xrxi
+Cxrxi

)
(15)

which uses a regular transpose rather than a Hermitian

(conjugate) transpose. Note that in the case of random variable,

the covariance matrix and the pseudo covariance matrix will

degenerate into scalars.

We calculate the pseudo covariance for all the random

variables, and plot the results in Fig. 5 (b). The degree

of non-circularity characterized by pseudo covariance of the

reflected data is approximately equal to that of the target

image.

IV. ALGORITHM FOR COMPLEX-VALUED PROCESSING

The observation in Section III allows us to reveal a deeper

connection between measurements and underlying signal, and

leads to a algorithmic modification of the unified sparse

Bayesian learning [18], specialized to deal with impropriety.

First, we briefly review the unified generalized Bayesian

framework (also called GrSBL) in [18].

Second, we replace the MMSE module in the generic

framework with a component-wise widely linear MMSE, due

to the fact that MMSE module in [18] can only be applied

to the setting where posterior means and variances can be
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*    *

C C
C C

C   C      
*    *

C C
C C

CC reflected datatarget image

c1 + i*d1 

c2 + i*d2

c101 + i*d101 

.

.

.

c1 + i*d1 

c2 + i*d2

c101 + i*d101 

.

.

.

a1 + i*b1 

a2 + i*b2 

a101 + i*b101 

a1 + i*b1 

a2 + i*b2 

a101 + i*b101 

a1 + i*b1 

a2 + i*b2 

a101 + i*b101 

reflected datatarget image

c1 + i*d1 

c2 + i*d2

c101 + i*d101 

.

.

.

a1 + i*b1 

a2 + i*b2 

a101 + i*b101 

(a)

CC

C

(b)

Fig. 5 (a) Sample sets of both reflected data and target image at the same location is built, for the calculation of augment covariance matrix related to that
location. (b) C̃ in the partial enlarged drawing are computed based on the sample sets given above, and the rest pseudo covariances are calculated in the

same manner; and the resultant plots consist of pseudo covariances of the reflected data, the target image, and the wavelets coefficients, each of which has
1024 elements

analytically calculated, such as quantized systems which is

not suitable for our case.

Third, we update the mean of component-wise widely linear

MMSE estimation based on the impropriety information from

the measurement data.

In order to keep notation consistent with that used by [18],

we use A to denote the sensing matrix (A = Φ).

A. The Generic GrSBL Algorithm

We begin with a generalized linear models (GLM), shown

in Fig. 6 (a), upon which the sparse recovery algorithm is built.

Fig. 6 The generalized linear models (GLM)

The signal x ∈ R
N is assumed to follow a prior distribution

p0(x). A ∈ R
M×N is a known sensing matrix and the

sampling rate is δ = M/N . The map of each measurement

vector y ∈ R
M and z = Ax pair can be characterized by fully

factorized marginal distribution

p(y|z) =
M∏
a=1

p (ya|za) =
M∏
a=1

p

(
ya|za =

N∑
i=1

Aaixi

)
. (16)

The goal of GLM inference is find the minimum mean

square error (MMSE) estimation of underlying signal x, which

is the hidden variable in z = Ax. By applying the unified

Bayesian inference framework, the GLM inference can be

decomposed into two modules: an standard linear model

(SLM) inference (module A in Fig. 7 (a)) and a MMSE

estimation (module B in Fig. 7 (a)). The original GLM

inference can be performed by alternating between the two

modules in a turbo manner [3].

GrSBL algorithm begins with placing Gaussian distribution

as prior over z ∼ N (zextA ,vA
ext), and performing

component-wise MMSE estimate in module B, with outputs

ỹ and σ̃2. Then, a sparse Bayesian learning built upon ỹ =
Ax + w̃ proceeds in module A, and thereafter mean and

variance of z are updated as zextA and vA
ext. This process is

repeated till convergence.

B. The Modified GrSBL Algorithm

We extend the original GrSBL algorithm by introducing

two sub-modules in module B: the component-wise linear

MMSE sub-module and the component-wise widely linear

MMSE sub-module [14]. It is assumed that target image is

sparse in wavelets domain, which is the necessary condition

for a successful recovery. Therefore, we use x to represent

the underlying wavelets coefficients, which has no clear

connection between neither the reflected data nor the target

image, in terms of pseudo covariance, as illustrated in Fig. 5
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SLM inference MMSE
(MAP estimation)

Component-wise 
LMMSE

Component-wise
widely LMMSE

Extrinsic Mean and 
covariance

AMP/SBL
inference

Extrinsic Mean and 
covariance

SLM inference MMSE
(MAP estimation)

AMP/SBL
inference

Extrinsic Mean and 
covariance

Component-wise 
LMMSE

Component-wise
widely LMMSE

Extrinsic Mean and 
covariance

(a)

(b)

Module A

Module B

Module A Module B

post post
A A, )(Z V pos

B
t post

B, )(Z V

t
B
pos updatedZ

2( , )y 22

ext ext
A A, )(z v

2( , )y 22

ext ext
A A, )(z v

( ) ( )t ty Ax w

Fig. 7 (a) unified Bayesian inference framework for GLM. (b) The modified
framework, where (yellow) rectangle modules ’Component-wise LMMSE’

and ’Component-wise widely LMMSE’ are introduced

(b).

In order to utilize the pseudo covariance relationship, we

perform an additional widely linear estimation upon ΦT
3 x,

which represents the estimated target image. It is worth

noting that, according to the uncertainty principle in signal

processing, one can not estimate the variance (or uncertainty)

in spatial domain and the wavelets domain simultaneously.

Thus, the additional widely linear estimation only updates

the estimated expectation, and thereafter the estimated target

image ΦT
3 x is transformed into zpost

b = Φ1 ◦ΦT
2 ∗(ΦT

3 x). Then

the inference in module A proceeds, as shown in Fig. 7 (b).

Specifically, at the t-th iteration, zextA (t−1) and vext
A (t−1)

are feed into module sub-module component-wise LMMSE as

inputs, and the corresponding outputs reads 3

zposta,B = A
(
xext
a,A(t− 1) +ECL

(
ya −Axext

a,A(t− 1)
) )

, (17)

with ECL = DCxyC
−1
yy , where the elements of the real

diagonal matrix D are

[D]i,i =
vexta,A(t− 1)

CxiyC
−1
yy Cyxi

(18)

where Cxy = CxxA
H and Cyy = ACxxA

H +Cnn. Cxx in

our case is a diagonal matrix, Cxx = diag{vexta,A(t− 1)}; and

Cnn contains the variance of the measurement noise, which

is also a diagonal matrix. The variance of z is updated via

vposta,B =

(
vexta,A(t− 1)

)2
CziyC

−1
yy Cyzi

− vexta,A(t− 1) (19)

Next, the estimated expectation zpostB is updated by

performing a component-wise widely LMMSE [14], based

on vpost
B and the impropriety information from measurement

3zexta,A(t) = Axext
a,A(t) where x denote the underlying wavelets coefficients.

data. Specifically, in the update process of zpostB , in order to

utilize the pseudo covariance information, the corresponding

constraint should be imposed onto the estimated target image,

rather than z. Therefore, component-wise widely LMMSE

estimator of the target image t̂IMG
4 is to be found as [14]

t̂IMG = Et[t] +WCWL

(
y − Ey[y]

)
(20)

with WCWL = [wCWL,1wCWL,2 · · ·wCWL,n]
H

and y
denotes the widely linear version of y, where the rows of

WCWL are given by

WCWL = [0 1]Ctiti(CtiyC
−1
yyCyti)

−1CtiyC
−1
yy . (21)

As shown in Fig. 8, the calculation of terms Ctiti and Cyti
are related to the pseudo covariance of the target image, which

can be estimated by that of the measurement data. The details

of the calculation is well presented in [21].

Thereafter, we have the updated zpostB = Att̂IMG.

1 11
CWL 0 1 ( )

i i i i it t t y yy yt t y yyW C C C C C C

i itA Cy t ttC
i itA Cy t ttC

* *

tttt
tt

tt tt

C C
C

C C The pseudo covariance of 
the target image

Fig. 8 Relationship of variables or matrices in the process of
component-wise widely LMMSE estimation as (21)

Next According to the turbo principle [3], extrinsic mean

ỹa(t) and variance σ̃2
a(t) of za are

σ̃2
a(t) =

(
1

v post
a,B (t)

− 1

v ext
a,A (t− 1)

)−1

, (22)

ỹa(t) = σ̃2
a(t)

(
z post
a,B (t)

v post
a,B (t)

− z ext
a,A (t− 1)

v ext
a,A (t− 1)

)
. (23)

Messages ỹa(t) and σ̃2
a(t) are delivered to module A to

perform the inference, which can be implemented via many

variants of SLM inference methods. In this paper, we apply

the original approximate message passing (AMP) [9], which

belongs to the r-LASSO algorithms [16]. Since our focus is on

the modification of module B, the AMP algorithm is simply

treated as a black-box function. Detailed implementation of

the AMP algorithm can be found in [16], [9].

Similarly, calculations according to turbo principle is

performed when messages passing from module A to module

B, given as [12]

vexta,A(t) =

(
1

vposta,A (t)
− 1

σ̃2
a(t)

)−1

(24)

zexta,A(t) = vexta,A(t)

(
zposta,A (t)

vposta,A (t)
− ỹa(t)

σ̃2
a(t)

)
. (25)

The resultant algorithm is summarized as

4We denote t = ΦT
2 ∗xpost

B and At = Φ1◦ΦT
2 , for the domain transform.
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Fig. 9 (a) The 30 percent sampling in the single-frequency test, operating at 19.26 GHz. (b) reconstruction of the modified GrSBL algorithm at 30 percent
sampling rate. (c) The pseudo covariance of the 30 percent sampled data, which is calculated as (15). (d) The construction performance of the different

algorithms from 10 to 50 percent sampling rate

Algorithm 1 Modified GrSBL algorithm

1: Initialization: vext
A (0), zextA (0), C̃xx;

2: Component-wise LMMSE estimation for zpostB as (17) and vpost
B

as (19);
3: Component-wise widely LMMSE estimation for zpostB as (20);
4: Extrinsic information: σ̃2 = vext

B and ỹ = zextB , as (22) and
(23)
5: AMP inference with IterSLM iterations over ỹ = Ax +
w̃, where w̃ ∼ N (

w̃;0, diag
(
σ̃2

))
;

Outputs: zpostA and vpost
A ;

6: Extrinsic information: vext
A in (24), and zextA in (25)

7: Repeats until convergence.

V. NUMERICAL RESULTS

In this section, we evaluate the performances of GrSBL

[18], modified GrSBL, genenric AMP [16], by performing

single-frequency 2-D SAR imaging with compressed

measurements. Note that, the original GrSBL algorithm can

only deal with quantized compressive sensing problems due to

requirement of explicit expression of the posterior. Therefore,

we replace the MMSE module with the component-wise

LMMSE.

The measurement setting is described in Section III. We

perform the test with sampling rate ranged from 10 percent

to 50 percent, and for each setting, result is averaged over

100 test runs. The normalized mean square error (NMSE) is

defined as (‖x̂− x‖2/‖x‖2).
For Gr-SBL and modified Gr-SBL, the number of inner loop

IterLSM = 1, and message z is initialized with zextA (0) =
0,vext

A (0) = 108.

Fig. 9 (a) shows the 30 percent random distributed samples

for the single-frequency measurement, which is operating

at 19.26 GHz; and Fig. 9 (b) shows the corresponding

reconstructed target image.

Fig. 9 (c) represents the pseudo covariance of the

complex-valued reflected data with respect to the 30 percent

samples illustrated in Fig. 9 (a). For missing pseudo

covariance, we conduct a 1-D interpolation (FFT method).

Results is presented in Fig. 9 (d), the modified GrSBL

algorithm achieves better performance with samping rate from

30 to 50 percent over the Gr-SBL and generic AMP.

Compared with GrSBL, the modified algorithm only

changes the MMSE method in module B, which considers

the second-order non-circularity information. The GrSBL
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performs slightly better than the original AMP.

At lower sampling rate, difference in performance is not

significant. The modified GrSBL even output poor results,

which may be caused by the inaccurate pseudo covariance

estimation, due to insufficient measurement data.

VI. CONCLUSION

In this paper, we extend the generalized sparse Bayesian

learning algorithm to deal with the improper complex-valued

signal processing problem: the 2-D near-field SAR imaging

with under-sampled measurements. Specifically, we perform

2-D image recovery by using single frequency raw data and

statistics information from multi-frequencies measurements. In

addition, we extend the generalized sparse Bayesian learning

by implementing the MMSE module via component-wise

widely linear MMSE, to handle general compressive sensing

problem, rather than merely quantized system. Numerical

results show that the proposed algorithm outperforms the

algorithms with conventional proper assumption.
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