Search results for: RC slab with opening.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 188

Search results for: RC slab with opening.

128 The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading

Authors: Palak J. Shukla, Atul K. Desai, Chentankumar D. Modhera

Abstract:

For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading.

Keywords: Blast phenomenon, experimental methods, material models, numerical methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1067
127 Shear Behaviour of RC Deep Beams with Openings Strengthened with Carbon Fiber Reinforced Polymer

Authors: Mannal Tariq

Abstract:

Construction industry is making progress at a high pace. The trend of the world is getting more biased towards the high rise buildings. Deep beams are one of the most common elements in modern construction having small span to depth ratio. Deep beams are mostly used as transfer girders. This experimental study consists of 16 reinforced concrete (RC) deep beams. These beams were divided into two groups; A and B. Groups A and B consist of eight beams each, having 381 mm (15 in) and 457 mm (18 in) depth respectively. Each group was further subdivided into four sub groups each consisting of two identical beams. Each subgroup was comprised of solid/control beam (without opening), opening above neutral axis (NA), at NA and below NA. Except for control beams, all beams with openings were strengthened with carbon fibre reinforced polymer (CFRP) vertical strips. These eight groups differ from each other based on depth and location of openings. For testing sake, all beams have been loaded with two symmetrical point loads. All beams have been designed based on strut and tie model concept. The outcome of experimental investigation elaborates the difference in the shear behaviour of deep beams based on depth and location of circular openings variation. 457 mm (18 in) deep beam with openings above NA show the highest strength and 381 mm (15 in) deep beam with openings below NA show the least strength. CFRP sheets played a vital role in increasing the shear capacity of beams.

Keywords: CFRP, deep beams, openings in deep beams, strut and tie model, shear behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
126 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle

Authors: S. Chahba, R. Sehab, A. Akrad, C. Morel

Abstract:

Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.

Keywords: Electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit fault diagnosis, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 374
125 Analysis of Explosive Shock Wave and its Application in Snow Avalanche Release

Authors: Mahmoud Zarrini, R. N. Pralhad

Abstract:

Avalanche velocity (from start to track zone) has been estimated in the present model for an avalanche which is triggered artificially by an explosive devise. The initial development of the model has been from the concept of micro-continuum theories [1], underwater explosions [2] and from fracture mechanics [3] with appropriate changes to the present model. The model has been computed for different slab depth R, slope angle θ, snow density ¤ü, viscosity μ, eddy viscosity η*and couple stress parameter η. The applicability of the present model in the avalanche forecasting has been highlighted.

Keywords: Snow avalanche velocity, avalanche zones, shockwave, couple stress fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
124 Experimental Analysis of Composite Timber-Concrete Beam with CFRP Reinforcement

Authors: O. Vlcek

Abstract:

The paper deals with current issues in research of advanced methods to increase reliability of traditional timber structural elements. It analyses the issue of strengthening of bent timber beams, such as ceiling beams in old (historical) buildings with additional concrete slab in combination with externally bonded fibre - reinforced polymer. The paper describes experimental testing of composite timber-concrete beam with FRP reinforcement and compares results with FEM analysis.

Keywords: Timber-concrete composite, strengthening, fibre-reinforced polymer, experimental analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
123 Comparison of Methods of Testing Composite Slabs

Authors: J. Holomek, R. Karásek, M. Bajer, J. Barnat

Abstract:

Composite steel-concrete slabs using thin-walled corrugated steel sheets with embossments represent a modern and effective combination of steel and concrete. However, the design of new types of sheeting is conditional on the execution of expensive and time-consuming laboratory testing. The effort to develop a cheaper and faster method has lead to many investigations all over the world. In our paper we compare the results from our experiments involving vacuum loading, four-point bending and small-scale shear tests.

Keywords: Composite slab, embossment, four-point bending, small-scale test, steel sheet, thin-walled, vacuum loading

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
122 Self-Healing Phenomenon Evaluation in Cementitious Matrix with Different Water/Cement Ratios and Crack Opening Age

Authors: V. G. Cappellesso, D. M. G. da Silva, J. A. Arndt, N. dos Santos Petry, A. B. Masuero, D. C. C. Dal Molin

Abstract:

Concrete elements are subject to cracking, which can be an access point for deleterious agents that can trigger pathological manifestations reducing the service life of these structures. Finding ways to minimize or eliminate the effects of this aggressive agents’ penetration, such as the sealing of these cracks, is a manner of contributing to the durability of these structures. The cementitious self-healing phenomenon can be classified in two different processes. The autogenous self-healing that can be defined as a natural process in which the sealing of this cracks occurs without the stimulation of external agents, meaning, without different materials being added to the mixture, while on the other hand, the autonomous seal-healing phenomenon depends on the insertion of a specific engineered material added to the cement matrix in order to promote its recovery. This work aims to evaluate the autogenous self-healing of concretes produced with different water/cement ratios and exposed to wet/dry cycles, considering two ages of crack openings, 3 days and 28 days. The self-healing phenomenon was evaluated using two techniques: crack healing measurement using ultrasonic waves and image analysis performed with an optical microscope. It is possible to observe that by both methods, it possible to observe the self-healing phenomenon of the cracks. For young ages of crack openings and lower water/cement ratios, the self-healing capacity is higher when compared to advanced ages of crack openings and higher water/cement ratios. Regardless of the crack opening age, these concretes were found to stabilize the self-healing processes after 80 days or 90 days.

Keywords: Self-healing, autogenous, water/cement ratio, curing cycles, test methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
121 Shear Strength of Reinforced Web Openings in Steel Beams

Authors: K. S. Sivakumaran, Bo Chen

Abstract:

The floor beams of steel buildings, cold-formed steel floor joists in particular, often require large web openings, which may affect their shear capacities. A cost effective way to mitigate the detrimental effects of such openings is to weld/fasten reinforcements. A difficulty associated with an experimental investigation to establish suitable reinforcement schemes for openings in shear zone is that moment always coexists with the shear, and thus, it is impossible to create pure shear state in experiments, resulting in moment influenced results. However, Finite Element Method (FEM) based analysis can be conveniently used to investigate the pure shear behaviour of webs including webs with reinforced openings. This paper presents the details associated with the finite element analysis of thick/thin-plates (representing the web of hot-rolled steel beam, and the web of a cold-formed steel member) having a large reinforced opening. The study considered simply-supported rectangular plates subjected to in-plane shear loadings until failure (including post-buckling behaviour). The plate was modelled using geometrically non-linear quadrilateral shell elements, and non-linear stress-strain relationship based on experiments. Total Langrangian with large displacement/small strain formulation was used for such analyses. The model also considered the initial geometric imperfections. This study considered three reinforcement schemes, namely, flat, lip, and angle reinforcements. This paper discusses the modelling considerations and presents the results associated with the various reinforcement schemes under consideration.

Keywords: Cold-formed steel, finite element analysis, opening, reinforcement, shear resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
120 A Study of Shear Stress Intensity Factor of PP and HDPE by a Modified Experimental Method together with FEM

Authors: Md. Shafiqul Islam, Abdullah Khan, Sharon Kao-Walter, Li Jian

Abstract:

Shear testing is one of the most complex testing areas where available methods and specimen geometries are different from each other. Therefore, a modified shear test specimen (MSTS) combining the simple uniaxial test with a zone of interest (ZOI) is tested which gives almost the pure shear. In this study, material parameters of polypropylene (PP) and high density polyethylene (HDPE) are first measured by tensile tests with a dogbone shaped specimen. These parameters are then used as an input for the finite element analysis. Secondly, a specially designed specimen (MSTS) is used to perform the shear stress tests in a tensile testing machine to get the results in terms of forces and extension, crack initiation etc. Scanning Electron Microscopy (SEM) is also performed on the shear fracture surface to find material behavior. These experiments are then simulated by finite element method and compared with the experimental results in order to confirm the simulation model. Shear stress state is inspected to find the usability of the proposed shear specimen. Finally, a geometry correction factor can be established for these two materials in this specific loading and geometry with notch using Linear Elastic Fracture Mechanics (LEFM). By these results, strain energy of shear failure and stress intensity factor (SIF) of shear of these two polymers are discussed in the special application of the screw cap opening of the medical or food packages with a temper evidence safety solution.

Keywords: Shear test specimen, Stress intensity factor, Finite Element simulation, Scanning electron microscopy, Screw cap opening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2884
119 Increasing Directional Intensity of Output Light Beam from Photonic Crystal Slab Outlet Including Micro Cavity Resonators

Authors: A. Mobini, K. Saghafi, V. Ahmadi

Abstract:

in this paper we modified a simple two-dimensional photonic crystal waveguide by creating micro cavity resonators in order to increase the output light emission which can be applicable to photonic integrated circuits. The micro cavity resonators are constructed by removing two tubes close to the waveguide output. Coupling emitted light from waveguide with those micro cavities, results increasing intensity of waveguide output light. Inserting a tube in last row of waveguide, we have improved directionality of output light beam.

Keywords: photonic crystal, waveguide, micro cavity resonators, directional emission

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
118 Prediction of Time to Crack Reinforced Concrete by Chloride Induced Corrosion

Authors: Anuruddha Jayasuriya, Thanakorn Pheeraphan

Abstract:

In this paper, a review of different mathematical models which can be used as prediction tools to assess the time to crack reinforced concrete (RC) due to corrosion is investigated. This investigation leads to an experimental study to validate a selected prediction model. Most of these mathematical models depend upon the mechanical behaviors, chemical behaviors, electrochemical behaviors or geometric aspects of the RC members during a corrosion process. The experimental program is designed to verify the accuracy of a well-selected mathematical model from a rigorous literature study. Fundamentally, the experimental program exemplifies both one-dimensional chloride diffusion using RC squared slab elements of 500 mm by 500 mm and two-dimensional chloride diffusion using RC squared column elements of 225 mm by 225 mm by 500 mm. Each set consists of three water-to-cement ratios (w/c); 0.4, 0.5, 0.6 and two cover depths; 25 mm and 50 mm. 12 mm bars are used for column elements and 16 mm bars are used for slab elements. All the samples are subjected to accelerated chloride corrosion in a chloride bath of 5% (w/w) sodium chloride (NaCl) solution. Based on a pre-screening of different models, it is clear that the well-selected mathematical model had included mechanical properties, chemical and electrochemical properties, nature of corrosion whether it is accelerated or natural, and the amount of porous area that rust products can accommodate before exerting expansive pressure on the surrounding concrete. The experimental results have shown that the selected model for both one-dimensional and two-dimensional chloride diffusion had ±20% and ±10% respective accuracies compared to the experimental output. The half-cell potential readings are also used to see the corrosion probability, and experimental results have shown that the mass loss is proportional to the negative half-cell potential readings that are obtained. Additionally, a statistical analysis is carried out in order to determine the most influential factor that affects the time to corrode the reinforcement in the concrete due to chloride diffusion. The factors considered for this analysis are w/c, bar diameter, and cover depth. The analysis is accomplished by using Minitab statistical software, and it showed that cover depth is the significant effect on the time to crack the concrete from chloride induced corrosion than other factors considered. Thus, the time predictions can be illustrated through the selected mathematical model as it covers a wide range of factors affecting the corrosion process, and it can be used to predetermine the durability concern of RC structures that are vulnerable to chloride exposure. And eventually, it is further concluded that cover thickness plays a vital role in durability in terms of chloride diffusion.

Keywords: Accelerated corrosion, chloride diffusion, corrosion cracks, passivation layer, reinforcement corrosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847
117 Linear-Operator Formalism in the Analysis of Omega Planar Layered Waveguides

Authors: António L. Topa

Abstract:

A complete spectral representation for the electromagnetic field of planar multilayered waveguides inhomogeneously filled with omega media is presented. The problem of guided electromagnetic propagation is reduced to an eigenvalue equation related to a 2 ´ 2 matrix differential operator. Using the concept of adjoint waveguide, general bi-orthogonality relations for the hybrid modes (either from the discrete or from the continuous spectrum) are derived. For the special case of homogeneous layers the linear operator formalism is reduced to a simple 2 ´ 2 coupling matrix eigenvalue problem. Finally, as an example of application, the surface and the radiation modes of a grounded omega slab waveguide are analyzed.

Keywords: Metamaterials, linear operators, omega media, layered waveguide, orthogonality relations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
116 Mechanical Properties of Ultra High Performance Concrete

Authors: Prabhat Ranjan Prem, B.H.Bharatkumar, Nagesh R Iyer

Abstract:

A research program is conducted to evaluate the mechanical properties of Ultra High Performance Concrete, target compressive strength at the age of 28 days being more than 150 MPa. The methodology to develop such mix has been explained. The material properties, mix design and curing regime are determined. The material attributes are understood by studying the stress strain behaviour of UHPC cylinders under uniaxial compressive loading. The load –crack mouth opening displacement (cmod) of UHPC beams, flexural strength and fracture energy was evaluated using third point loading test. Compressive strength and Split tensile strength results are determined to find out the compressive and tensile behaviour. Residual strength parameters are presented vividly explaining the flexural performance, toughness of concrete.Durability studies were also done to compare the effect of fibre to that of a control mix For all the studies the Mechanical properties were evaluated by varying the percentage and aspect ratio of steel fibres The results reflected that higher aspect ratio and fibre volume produced drastic changes in the cube strength, cylinder strength, post peak response, load-cmod, fracture energy flexural strength, split tensile strength, residual strength and durability. In regards to null application of UHPC in India, an initiative is undertaken to comprehend the mechanical behaviour of UHPC, which will be vital for longer run in commercialization for structural applications.

Keywords: Ultra High Performance Concrete, Reinforcement Index, Compressive Strength, Tensile Strength, Flexural Strength, Residual Strength, Fracture Energy, Stress-Strain Relationships, Load-Crack Mouth Opening Displacement and Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10531
115 Optimisation of A Phase Change Thermal Storage System

Authors: Nasrul Amri Mohd Amin, Martin Belusko, Frank Bruno

Abstract:

PCMs have always been viewed as a suitable candidate for off peak thermal storage, particularly for refrigeration systems, due to the high latent energy densities of these materials. However, due to the need to have them encapsulated within a container this density is reduced. Furthermore, PCMs have a low thermal conductivity which reduces the useful amount of energy which can be stored. To consider these factors, the true energy storage density of a PCM system was proposed and optimised for PCMs encapsulated in slabs. Using a validated numerical model of the system, a parametric study was undertaken to investigate the impact of the slab thickness, gap between slabs and the mass flow rate. The study showed that, when optimised, a PCM system can deliver a true energy storage density between 53% and 83% of the latent energy density of the PCM.

Keywords: Phase change material, refrigeration, sustainability, thermal energy storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251
114 Microwave Shielding of Magnetized Hydrogen Plasma in Carbon Nanotubes

Authors: Afshin Moradi, Mohammad Hosain Teimourpour

Abstract:

We derive simple sets of equations to describe the microwave response of a thin film of magnetized hydrogen plasma in the presence of carbon nanotubes, which were grown by ironcatalyzed high-pressure disproportionation (HiPco). By considering the interference effects due to multiple reflections between thin plasma film interfaces, we present the effects of the continuously changing external magnetic field and plasma parameters on the reflected power, absorbed power, and transmitted power in the system. The simulation results show that the interference effects play an important role in the reflectance, transmittance and absorptance of microwave radiation at the magnetized plasma slab. As a consequence, the interference effects lead to a sinusoidal variation of the reflected intensity and can greatly reduce the amount of reflection power, but the absorption power increases.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
113 Development of Material Analyzing Software Using X-Ray Diffraction

Authors: Le Chi Cuong

Abstract:

X-ray diffraction is an effective mean for analyzing material properties. This paper developed a new computational software for determining the properties of crystalline materials such as elastic constants, residual stresses, surface hardness, phase components, and etc. The results computed from the X-ray diffraction method were compared to those from the traditional methods and they are in the 95% confidential limits, showing that the newly developed software has high reproducibility, opening a possibility of its commercialization.

Keywords: X-ray diffraction, Nondestructive evaluation, Hardness, Residual stress, Phase determination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
112 Injunctions, Disjunctions, Remnants: The Reverse of Unity

Authors: Igor Guatelli

Abstract:

The universe of aesthetic perception entails impasses about sensitive divergences that each text or visual object may be subjected to. If approached through intertextuality that is not based on the misleading notion of kinships or similarities a priori admissible, the possibility of anachronistic, heterogeneous - and non-diachronic - assemblies can enhance the emergence of interval movements, intermediate, and conflicting, conducive to a method of reading, interpreting, and assigning meaning that escapes the rigid antinomies of the mere being and non-being of things. In negative, they operate in a relationship built by the lack of an adjusted meaning set by their positive existences, with no remainders; the generated interval becomes the remnant of each of them; it is the opening that obscures the stable positions of each one. Without the negative of absence, of that which is always missing or must be missing in a text, concept, or image made positive by history, nothing is perceived beyond what has been already given. Pairings or binary oppositions cannot lead only to functional syntheses; on the contrary, methodological disturbances accumulated by the approximation of signs and entities can initiate a process of becoming as an opening to an unforeseen other, transformation until a moment when the difficulties of [re]conciliation become the mainstay of a future of that sign/entity, not envisioned a priori. A counter-history can emerge from these unprecedented, misadjusted approaches, beginnings of unassigned injunctions and disjunctions, in short, difficult alliances that open cracks in a supposedly cohesive history, chained in its apparent linearity with no remains, understood as a categorical historical imperative. Interstices are minority fields that, because of their opening, are capable of causing opacity in that which, apparently, presents itself with irreducible clarity. Resulting from an incomplete and maladjusted [at the least dual] marriage between the signs/entities that originate them, this interval may destabilize and cause disorder in these entities and their own meanings. The interstitials offer a hyphenated relationship: a simultaneous union and separation, a spacing between the entity’s identity and its otherness or, alterity. One and the other may no longer be seen without the crack or fissure that now separates them, uniting, by a space-time lapse. Ontological, semantic shifts are caused by this fissure, an absence between one and the other, one with and against the other. Based on an improbable approximation between some conceptual and semantic shifts within the design production of architect Rem Koolhaas and the textual production of the philosopher Jacques Derrida, this article questions the notion of unity, coherence, affinity, and complementarity in the process of construction of thought from these ontological, epistemological, and semiological fissures that rattle the signs/entities and their stable meanings. Fissures in a thought that is considered coherent, cohesive, formatted are the negativity that constitutes the interstices that allow us to move towards what still remains as non-identity, which allows us to begin another story.

Keywords: Clearing, interstice, negative, remnant, spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 371
111 The Importance of Bridge Health Monitoring

Authors: Punya Chupanit, Chayatan Phromsorn

Abstract:

In the past, there were many bridge-s collapses due to lack of bridge structural capacity information. Most of concrete bridge health was relied on information from visual inspection, which sometime was inadequate. This study was conducted in order to investigate relationship between bridge structural condition and bridge visual condition. This study was a part of a big project conducted at Department of Highways of Thailand. In this study, 31 bridges including slab-type bridges, plank-girder bridges, prestressed box-beam bridges, prestressed I-girder bridges and prestressed multibeam bridges were selected for visual inspection and load test. It was found a positive correlation between bridge appearance and bridge-s load carrying capacity. However, statistical characteristic revealed low correlation between them.

Keywords: Bridge, Visual Inspection, Load Test, Condition Rating, Rating Factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
110 Early-Age Structural and Thermal Performance of GGBS Concrete

Authors: Kangkang Tang

Abstract:

A large amount of blast furnace slag is generated in China. Most ground granulated blast furnace slag (GGBS) however ends up in low-grade applications. Blast furnace slag, ground to an appropriate fineness, can be used as a partial replacement of cementitious material in concrete. The potential for using GGBS in structural concrete, e.g. concrete beams and columns is investigated at Xi’an Jiaotong-Liverpool University (XJTLU). With 50% of CEM I cement replaced with GGBS, peak hydration temperatures determined in a suspended concrete slab reduced by 20%. This beneficiary effect has not been further improved with 70% of CEM I replaced with GGBS. Partial replacement of CEM I with GGBS has a retardation effect on the early-age strength of concrete. More GGBS concrete mixes will be conducted to identify an ‘optimum’ replacement level which will lead to a reduced thermal loading, without significantly compromising the early-age strength of concrete.

Keywords: GGBS, thermal effect, sustainable construction, CEM I.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3118
109 Structural Behaviour of Partially Filled Steel Grid Composite Deck

Authors: Hyun-Seop Shin, Chin-Hyung Lee, Ki-Tae Park

Abstract:

In order to apply partially filled steel grid composite deck as the horizontal supporting structure of various kinds of infrastructures, the variation of its flexural strength according to design parameters such as cross and longitudinal bars constituting the steel grid and the type of shear connection is evaluated and compared experimentally. The result shows that the design sensitivity of the deck to the spacing of the cross bars is insignificant in the case of structure with low risk of punching failure or without load distribution problem. By means of shear connection composed by transverse rebar and longitudinal bar without additional shear stud bolts, the complete interaction between steel grid and concrete slab is able to be achieved and the composite deck can develop its bending resistance capacity.

Keywords: bending strength, composite action, shear connection, steel grid composite deck

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
108 Effectiveness of Radon Remedial Action Implemented in a School on the Island of Ischia

Authors: F. Loffredo, M. Quarto, M. Pugliese, A. Mazzella, F. De Cicco, V. Roca

Abstract:

The aim of this study is to evaluate the efficacy of radon remedial action in a school on the Ischia island, South Italy, affected by indoor radon concentration higher than the value of 500 Bq/m3. This value is the limit imposed by the Italian legislation, to above which corrective actions in schools are necessary. Before the application of remedial action, indoor radon concentrations were measured in 9 rooms of the school. The measurements were performed with LR-115 passive alpha detectors (SSNTDs) and E-Perm. The remedial action was conducted in one of the office affected by high radon concentration using a Radonstop paint applied after the construction of a concrete slab under the floor. The effect of remedial action was the reduction of the concentration of radon of 41% and moreover it has demonstrated to be durable over time. The chosen method is cheap and easy to apply and it could be designed for various types of building. This method can be applied to new and existing buildings that show high dose values.

Keywords: E-Perm, LR 115 detectors, radon remediation, school.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898
107 Simple Procedure for Probability Calculation of Tensile Crack Occurring in Rigid Pavement – Case Study

Authors: Aleš Florian, Lenka Ševelová, Jaroslav Žák

Abstract:

Formation of tensile cracks in concrete slabs of rigid pavement can be (among others) the initiation point of the other, more serious failures which can ultimately lead to complete degradation of the concrete slab and thus the whole pavement. Two measures can be used for reliability assessment of this phenomenon - the probability of failure and/or the reliability index. Different methods can be used for their calculation. The simple ones are called moment methods and simulation techniques. Two methods - FOSM Method and Simple Random Sampling Method - are verified and their comparison is performed. The influence of information about the probability distribution and the statistical parameters of input variables as well as of the limit state function on the calculated reliability index and failure probability are studied in three points on the lower surface of concrete slabs of the older type of rigid pavement formerly used in the Czech Republic.

Keywords: Failure, pavement, probability, reliability index, simulation, tensile crack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
106 Computational Investigations of Concrete Footing Rotational Rigidity

Authors: E. S. Fraser, G. P. A. G. van Zijl

Abstract:

In many buildings we rely on large footings to offer structural stability. Designers often compensate for the lack of knowledge available with regard to foundation-soil interaction by furnishing structures with overly large footings. This may lead to a significant increase in building expenditures if many large foundations are present. This paper describes the interface material law that governs the behavior along the contact surface of adjacent materials, and the behavior of a large foundation under ultimate limit loading. A case study is chosen that represents a common foundation-soil system frequently used in general practice and therefore relevant to other structures. Investigations include compressing versus uplifting wind forces, alterations to the foundation size and subgrade compositions, the role of the slab stiffness and presence and the effect of commonly used structural joints and connections. These investigations aim to provide the reader with an objective design approach, efficiently preventing structural instability.

Keywords: Computational investigation of footing rotation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
105 Multiple Mental Thought Parametric Classification: A New Approach for Individual Identification

Authors: Ramaswamy Palaniappan

Abstract:

This paper reports a new approach on identifying the individuality of persons by using parametric classification of multiple mental thoughts. In the approach, electroencephalogram (EEG) signals were recorded when the subjects were thinking of one or more (up to five) mental thoughts. Autoregressive features were computed from these EEG signals and classified by Linear Discriminant classifier. The results here indicate that near perfect identification of 400 test EEG patterns from four subjects was possible, thereby opening up a new avenue in biometrics.

Keywords: Autoregressive, Biometrics, Electroencephalogram, Linear discrimination, Mental thoughts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
104 Mathematical Modeling of an Avalanche Release and Estimation of Flow Parameters by Numerical Method

Authors: Mahmoud Zarrini

Abstract:

Avalanche release of snow has been modeled in the present studies. Snow is assumed to be represented by semi-solid and the governing equations have been studied from the concept of continuum approach. The dynamical equations have been solved for two different zones [starting zone and track zone] by using appropriate initial and boundary conditions. Effect of density (ρ), Eddy viscosity (η), Slope angle (θ), Slab depth (R) on the flow parameters have been observed in the present studies. Numerical methods have been employed for computing the non linear differential equations. One of the most interesting and fundamental innovation in the present studies is getting initial condition for the computation of velocity by numerical approach. This information of the velocity has obtained through the concept of fracture mechanics applicable to snow. The results on the flow parameters have found to be in qualitative agreement with the published results.

Keywords: Snow avalanche, fracture mechanics, avalanche velocity, avalanche zones.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
103 Parametric Investigation of Aircraft Door’s Emergency Power Assist System (EPAS)

Authors: Marshal D. Kafle, Jun H. Kim, Hyun W. Been, Kyoung M. Min, Sung H. Kim

Abstract:

Fluid viscous damping systems are well suited for many air vehicles subjected to shock and vibration. These damping system work with the principle of viscous fluid throttling through the orifice to create huge pressure difference between compression and rebound chamber and obtain the required damping force. One application of such systems is its use in aircraft door system to counteract the door’s velocity and safely stop it. In exigency situations like crash or emergency landing where the door doesn’t open easily, possibly due to unusually tilting of fuselage or some obstacles or intrusion of debris obstruction to move the parts of the door, such system can be combined with other systems to provide needed force to forcefully open the door and also securely stop it simultaneously within the required time i.e. less than 8 seconds. In the present study, a hydraulic system called snubber along with other systems like actuator, gas bottle assembly which together known as emergency power assist system (EPAS) is designed, built and experimentally studied to check the magnitude of angular velocity, damping force and time required to effectively open the door. Whenever needed, the gas pressure from the bottle is released to actuate the actuator and at the same time pull the snubber’s piston to operate the emergency opening of the door. Such EPAS installed in the suspension arm of the aircraft door is studied explicitly changing parameters like orifice size, oil level, oil viscosity and bypass valve gap and its spring of the snubber at varying temperature to generate the optimum design case. Comparative analysis of the EPAS at several cases is done and conclusions are made. It is found that during emergency condition, the system opening time and angular velocity, when snubber with 0.3mm piston and shaft orifice and bypass valve gap of 0.5 mm with its original spring is used, shows significant improvement over the old ones.

Keywords: Aircraft Door Damper, Bypass Valve, Emergency Power Assist System, Hydraulic Damper, Oil viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4073
102 Property of Polyurethane: from Soy-derived Phosphate Ester

Authors: Flora Elvistia Firdaus

Abstract:

Polyurethane foams (PUF) were formed by a chemical reaction of polyol and isocyanate. The polyol was manufactured by ring-opening hydrolysis of epoxidized soybean oil in the presence of phosphoric acid under varying experimental conditions. Other factors in the foam formulation such as water content and surfactant were kept constant. The effect of the amount of solvents, phosphoric acid, and their derivates in the foam formulation on the properties of polyurethane foams were studied. The properties of the material were measured via a number of parameters, which are water content of prepared polyol, polymer density and cellular structures.

Keywords: soy, polyurethane, phosporic acid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
101 Polishing Machine Based on High-Pressure Water Jet

Authors: Mohammad A. Khasawneh

Abstract:

The design of high pressure water jet based polishing equipment and its fabrication conducted in this study is reported herein, together with some preliminary test results for assessing its applicability for HMA surface polishing. This study also provides preliminary findings concerning the test variables, such as the rotational speed, the water jet pressure, the abrasive agent used, and the impact angel that were experimentally investigated in this study. The preliminary findings based on four trial tests (two on large slab specimens and two on small size gyratory compacted specimens), however, indicate that both friction and texture values tend to increase with the polishing durations for two combinations of pressure and rotation speed of the rotary deck. It seems that the more polishing action the specimen is subjected to; the aggregate edges are created such that the surface texture values are increased with the accompanied increase in friction values. It may be of interest (but which is outside the scope of this study) to investigate if the similar trend exist for HMA prepared with aggregate source that is sand and gravel.

Keywords: High-pressure, water jet, Friction, Texture, Polishing, Statistical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999
100 Constitutive Role of Light in Christian Sacred Architecture

Authors: Sokol Gojnik, Zorana; Gojnik, Igor

Abstract:

Light is the central theme of sacred architecture of all religions and so of Christianity. The aim of this paper is to emphasize the inner sense of light and its constitutive role in Christian sacred architecture. The theme of light in Christian sacred architecture is fundamentally connected to its meaning and symbolism of light in Christian theology and liturgy. This fundamental connection is opening the space to the symbolic and theological comprehending of light which was present throughout the history of Christianity and which is lacking in contemporary sacred architecture.

Keywords: Light, sacred architecture, liturgy, theology, church.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
99 Structural Evaluation of Airfield Pavement Using Finite Element Analysis Based Methodology

Authors: Richard Ji

Abstract:

Nondestructive deflection testing has been accepted widely as a cost-effective tool for evaluating the structural condition of airfield pavements. Backcalculation of pavement layer moduli can be used to characterize the pavement existing condition in order to compute the load bearing capacity of pavement. This paper presents an improved best-fit backcalculation methodology based on deflection predictions obtained using finite element method (FEM). The best-fit approach is based on minimizing the squared error between falling weight deflectometer (FWD) measured deflections and FEM predicted deflections. Then, concrete elastic modulus and modulus of subgrade reaction were back-calculated using Heavy Weight Deflectometer (HWD) deflections collected at the National Airport Pavement Testing Facility (NAPTF) test site. It is an alternative and more versatile method in considering concrete slab geometry and HWD testing locations compared to methods currently available.

Keywords: Nondestructive testing, Pavement moduli backcalculation, Finite Element Method, FEM, concrete pavements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 738