Search results for: Quintic non-polynomial spline
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 65

Search results for: Quintic non-polynomial spline

65 Quartic Nonpolynomial Spline Solutions for Third Order Two-Point Boundary Value Problem

Authors: Talaat S. El-Danaf

Abstract:

In this paper, we develop quartic nonpolynomial spline method for the numerical solution of third order two point boundary value problems. It is shown that the new method gives approximations, which are better than those produced by other spline methods. Convergence analysis of the method is discussed through standard procedures. Two numerical examples are given to illustrate the applicability and efficiency of the novel method.

Keywords: Quartic nonpolynomial spline, Two-point boundary value problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
64 Quintic Spline Solution of Fourth-Order Parabolic Equations Arising in Beam Theory

Authors: Reza Mohammadi, Mahdieh Sahebi

Abstract:

We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the derived method. Numerical comparison with other methods shows the superiority of presented scheme.

Keywords: Fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points, stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
63 A Review on Higher Order Spline Techniques for Solving Burgers Equation Using B-Spline Methods and Variation of B-Spline Techniques

Authors: Maryam Khazaei Pool, Lori Lewis

Abstract:

This is a summary of articles based on higher order B-splines methods and the variation of B-spline methods such as Quadratic B-spline Finite Elements Method, Exponential Cubic B-Spline Method Septic B-spline Technique, Quintic B-spline Galerkin Method, and B-spline Galerkin Method based on the Quadratic B-spline Galerkin method (QBGM) and Cubic B-spline Galerkin method (CBGM). In this paper we study the B-spline methods and variations of B-spline techniques to find a numerical solution to the Burgers’ equation. A set of fundamental definitions including Burgers equation, spline functions, and B-spline functions are provided. For each method, the main technique is discussed as well as the discretization and stability analysis. A summary of the numerical results is provided and the efficiency of each method presented is discussed. A general conclusion is provided where we look at a comparison between the computational results of all the presented schemes. We describe the effectiveness and advantages of these methods.

Keywords: Burgers’ Equation, Septic B-spline, Modified Cubic B-Spline Differential Quadrature Method, Exponential Cubic B-Spline Technique, B-Spline Galerkin Method, and Quintic B-Spline Galerkin Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 361
62 Non-Polynomial Spline Solution of Fourth-Order Obstacle Boundary-Value Problems

Authors: Jalil Rashidinia, Reza Jalilian

Abstract:

In this paper we use quintic non-polynomial spline functions to develop numerical methods for approximation to the solution of a system of fourth-order boundaryvalue problems associated with obstacle, unilateral and contact problems. The convergence analysis of the methods has been discussed and shown that the given approximations are better than collocation and finite difference methods. Numerical examples are presented to illustrate the applications of these methods, and to compare the computed results with other known methods.

Keywords: Quintic non-polynomial spline, Boundary formula, Convergence, Obstacle problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
61 Non-Polynomial Spline Method for the Solution of Problems in Calculus of Variations

Authors: M. Zarebnia, M. Hoshyar, M. Sedaghati

Abstract:

In this paper, a numerical solution based on nonpolynomial cubic spline functions is used for finding the solution of boundary value problems which arise from the problems of calculus of variations. This approximation reduce the problems to an explicit system of algebraic equations. Some numerical examples are also given to illustrate the accuracy and applicability of the presented method.

Keywords: Calculus of variation; Non-polynomial spline functions; Numerical method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
60 Cubic Trigonometric B-Spline Applied to Linear Two-Point Boundary Value Problems of Order Two

Authors: Nur Nadiah Abd Hamid , Ahmad Abd. Majid, Ahmad Izani Md. Ismail

Abstract:

Linear two-point boundary value problems of order two are solved using cubic trigonometric B-spline interpolation method (CTBIM). Cubic trigonometric B-spline is a piecewise function consisting of trigonometric equations. This method is tested on some problems and the results are compared with cubic B-spline interpolation method (CBIM) from the literature. CTBIM is found to approximate the solution slightly more accurately than CBIM if the problems are trigonometric.

Keywords: trigonometric B-spline, two-point boundary valueproblem, spline interpolation, cubic spline

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
59 On the Multiplicity of Discriminants of Relative Quadratic Extensions of Quintic Fields

Authors: Schehrazad Selmane

Abstract:

According to Hermite there exists only a finite number of number fields having a given degree, and a given value of the discriminant, nevertheless this number is not known generally. The determination of a maximum number of number fields of degree 10 having a given discriminant that contain a subfield of degree 5 having a fixed class number, narrow class number and Galois group is the purpose of this work. The constructed lists of the first coincidences of 52 (resp. 50, 40, 48, 22, 6) nonisomorphic number fields with same discriminant of degree 10 of signature (6,2) (resp. (4,3), (8,1), (2,4), (0,5), (10,0)) containing a quintic field. For each field in the lists, we indicate its discriminant, the discriminant of its subfield, a relative polynomial generating the field over its quintic field and its relative discriminant, the corresponding polynomial over Q and its Galois closure are presented with concluding remarks.

Keywords: Discriminant, nonisomorphic fields, quintic fields, relative quadratic extensions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
58 Extended Cubic B-spline Interpolation Method Applied to Linear Two-Point Boundary Value Problems

Authors: Nur Nadiah Abd Hamid, Ahmad Abd. Majid, Ahmad Izani Md. Ismail

Abstract:

Linear two-point boundary value problem of order two is solved using extended cubic B-spline interpolation method. There is one free parameters, λ, that control the tension of the solution curve. For some λ, this method produced better results than cubic B-spline interpolation method.

Keywords: two-point boundary value problem, B-spline, extendedcubic B-spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
57 A New Quadrature Rule Derived from Spline Interpolation with Error Analysis

Authors: Hadi Taghvafard

Abstract:

We present a new quadrature rule based on the spline interpolation along with the error analysis. Moreover, some error estimates for the reminder when the integrand is either a Lipschitzian function, a function of bounded variation or a function whose derivative belongs to Lp are given. We also give some examples to show that, practically, the spline rule is better than the trapezoidal rule.

Keywords: Quadrature, Spline interpolation, Trapezoidal rule, Numericalintegration, Error analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
56 Application of Higher Order Splines for Boundary Value Problems

Authors: Pankaj Kumar Srivastava

Abstract:

Bringing forth a survey on recent higher order spline techniques for solving boundary value problems in ordinary differential equations. Here we have discussed the summary of the articles since 2000 till date based on higher order splines like Septic, Octic, Nonic, Tenth, Eleventh, Twelfth and Thirteenth Degree splines. Comparisons of methods with own critical comments as remarks have been included.

Keywords: Septic spline, Octic spline, Nonic spline, Tenth, Eleventh, Twelfth and Thirteenth Degree spline, parametric and non-parametric splines, thermal instability, astrophysics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2769
55 Beta-spline Surface Fitting to Multi-slice Images

Authors: Normi Abdul Hadi, Arsmah Ibrahim, Fatimah Yahya, Jamaludin Md. Ali

Abstract:

Beta-spline is built on G2 continuity which guarantees smoothness of generated curves and surfaces using it. This curve is preferred to be used in object design rather than reconstruction. This study however, employs the Beta-spline in reconstructing a 3- dimensional G2 image of the Stanford Rabbit. The original data consists of multi-slice binary images of the rabbit. The result is then compared with related works using other techniques.

Keywords: Beta-spline, multi-slice image, rectangular surface, 3D reconstruction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
54 Cantor Interpolating Spline to Design Electronic Mail Boxes

Authors: Adil Al-Rammahi

Abstract:

Electronic mail is very important in present time. Many researchers work for designing, improving, securing, fasting, goodness and others fields in electronic mail. This paper introduced new algorithm to use Cantor sets and cubic spline interpolating function in the electronic mail design. Cantor sets used as the area (or domain) of the mail, while spline function used for designing formula. The roots of spline function versus Cantor sets used as the controller admin. The roots calculated by the numerical Newton – Raphson's method. The result of this algorithm was promised.

Keywords: Cantor sets, spline, electronic mail design, Newton – Raphson's method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
53 A Comparison of the Nonparametric Regression Models using Smoothing Spline and Kernel Regression

Authors: Dursun Aydin

Abstract:

This paper study about using of nonparametric models for Gross National Product data in Turkey and Stanford heart transplant data. It is discussed two nonparametric techniques called smoothing spline and kernel regression. The main goal is to compare the techniques used for prediction of the nonparametric regression models. According to the results of numerical studies, it is concluded that smoothing spline regression estimators are better than those of the kernel regression.

Keywords: Kernel regression, Nonparametric models, Prediction, Smoothing spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3100
52 Ten Limit Cycles in a Quintic Lyapunov System

Authors: Li Feng

Abstract:

In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated.With the help of computer algebra system MATHEMATICA, the first 10 quasi Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there exist 10 small amplitude limit cycles created from the three order nilpotent critical point is also proved. Henceforth we give a lower bound of cyclicity of three-order nilpotent critical point for quintic Lyapunov systems. At last, we give an system which could bifurcate 10 limit circles.

Keywords: Three-order nilpotent critical point, center-focus problem, bifurcation of limit cycles, Quasi-Lyapunov constant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
51 Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices

Authors: Khosrow Maleknejad, Yaser Rostami

Abstract:

In this paper, Semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions

Keywords: Integro-differential equations, Quartic B-spline wavelet, Operational matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3150
50 Evaluating Sinusoidal Functions by a Low Complexity Cubic Spline Interpolator with Error Optimization

Authors: Abhijit Mitra, Harpreet Singh Dhillon

Abstract:

We present a novel scheme to evaluate sinusoidal functions with low complexity and high precision using cubic spline interpolation. To this end, two different approaches are proposed to find the interpolating polynomial of sin(x) within the range [- π , π]. The first one deals with only a single data point while the other with two to keep the realization cost as low as possible. An approximation error optimization technique for cubic spline interpolation is introduced next and is shown to increase the interpolator accuracy without increasing complexity of the associated hardware. The architectures for the proposed approaches are also developed, which exhibit flexibility of implementation with low power requirement.

Keywords: Arithmetic, spline interpolator, hardware design, erroranalysis, optimization methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
49 Application of Generalized NAUT B-Spline Curveon Circular Domain to Generate Circle Involute

Authors: Ashok Ganguly, Pranjali Arondekar

Abstract:

In the present paper, we use generalized B-Spline curve in trigonometric form on circular domain, to capture the transcendental nature of circle involute curve and uncertainty characteristic of design. The required involute curve get generated within the given tolerance limit and is useful in gear design.

Keywords: Bézier, Circle Involute, NAUT B-Spline, Spur Gear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
48 GMDH Modeling Based on Polynomial Spline Estimation and Its Applications

Authors: LI qiu-min, TIAN yi-xiang, ZHANG gao-xun

Abstract:

GMDH algorithm can well describe the internal structure of objects. In the process of modeling, automatic screening of model structure and variables ensure the convergence rate.This paper studied a new GMDH model based on polynomial spline  stimation. The polynomial spline function was used to instead of the transfer function of GMDH to characterize the relationship between the input variables and output variables. It has proved that the algorithm has the optimal convergence rate under some conditions. The empirical results show that the algorithm can well forecast Consumer Price Index (CPI).

Keywords: spline, GMDH, nonparametric, bias, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
47 Spline Collocation for Solving System of Fredholm and Volterra Integral Equations

Authors: N. Ebrahimi, J. Rashidinia

Abstract:

In this paper, numerical solution of system of Fredholm and Volterra integral equations by means of the Spline collocation method is considered. This approximation reduces the system of integral equations to an explicit system of algebraic equations. The solution is collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. The error analysis of proposed numerical method is studied theoretically. The results are compared with the results obtained by other methods to illustrate the accuracy and the implementation of our method.

Keywords: Convergence analysis, Cubic B-spline, Newton- Cotes formula, System of Fredholm and Volterra integral equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
46 Cubic Trigonometric B-spline Approach to Numerical Solution of Wave Equation

Authors: Shazalina Mat Zin, Ahmad Abd. Majid, Ahmad Izani Md. Ismail, Muhammad Abbas

Abstract:

The generalized wave equation models various problems in sciences and engineering. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline for the approximate solution of wave equation is developed. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Von Neumann stability analysis is used to analyze the proposed method. Two problems are discussed to exhibit the feasibility and capability of the method. The absolute errors and maximum error are computed to assess the performance of the proposed method. The results were found to be in good agreement with known solutions and with existing schemes in literature.

Keywords: Collocation method, Cubic trigonometric B-spline, Finite difference, Wave equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2603
45 Strength Optimization of Induction Hardened Splined Shaft – Material and Geometric Aspects

Authors: I. Barsoum, F. Khan

Abstract:

the current study presents a modeling framework to determine the torsion strength of an induction hardened splined shaft by considering geometry and material aspects with the aim to optimize the static torsion strength by selection of spline geometry and hardness depth. Six different spline geometries and seven different hardness profiles including non-hardened and throughhardened shafts have been considered. The results reveal that the torque that causes initial yielding of the induction hardened splined shaft is strongly dependent on the hardness depth and the geometry of the spline teeth. Guidelines for selection of the appropriate hardness depth and spline geometry are given such that an optimum static torsion strength of the component can be achieved.

Keywords: Static strength, splined shaft, torsion, induction hardening, hardness profile, finite element, optimization, design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4970
44 A Comparison of Some Splines-Based Methods for the One-dimensional Heat Equation

Authors: Joan Goh, Ahmad Abd. Majid, Ahmad Izani Md. Ismail

Abstract:

In this paper, collocation based cubic B-spline and extended cubic uniform B-spline method are considered for solving one-dimensional heat equation with a nonlocal initial condition. Finite difference and θ-weighted scheme is used for time and space discretization respectively. The stability of the method is analyzed by the Von Neumann method. Accuracy of the methods is illustrated with an example. The numerical results are obtained and compared with the analytical solutions.

Keywords: Heat equation, Collocation based, Cubic Bspline, Extended cubic uniform B-spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
43 Septic B-Spline Collocation Method for Numerical Solution of the Kuramoto-Sivashinsky Equation

Authors: M. Zarebnia, R. Parvaz

Abstract:

In this paper the Kuramoto-Sivashinsky equation is solved numerically by collocation method. The solution is approximated as a linear combination of septic B-spline functions. Applying the Von-Neumann stability analysis technique, we show that the method is unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The global relative error and L∞ in the solutions show the efficiency of the method computationally.

Keywords: Kuramoto-Sivashinsky equation, Septic B-spline, Collocation method, Finite difference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
42 Overview of Adaptive Spline Interpolation

Authors: Rongli Gai, Zhiyuan Chang, Xiaohong Wang, Jingyu Liu

Abstract:

In view of various situations in the interpolation process, most researchers use self-adaptation to adjust the interpolation process, which is also one of the current and future research hotspots in the field of CNC (Computerized Numerical Control) machining. In the interpolation process, according to the overview of the spline curve interpolation algorithm, the adaptive analysis is carried out from the factors affecting the interpolation process. The adaptive operation is reflected in various aspects, such as speed, parameters, errors, nodes, feed rates, random period, sensitive point, step size, curvature, adaptive segmentation, adaptive optimization, etc. This paper will analyze and summarize the research of adaptive imputation in the direction of the above factors affecting imputation.

Keywords: Adaptive algorithm, CNC machining, interpolation constraints, spline curve interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
41 Solving One-dimensional Hyperbolic Telegraph Equation Using Cubic B-spline Quasi-interpolation

Authors: Marzieh Dosti, Alireza Nazemi

Abstract:

In this paper, the telegraph equation is solved numerically by cubic B-spline quasi-interpolation .We obtain the numerical scheme, by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the temporal derivative of the dependent variable. The advantage of the resulting scheme is that the algorithm is very simple so it is very easy to implement. The results of numerical experiments are presented, and are compared with analytical solutions by calculating errors L2 and L∞ norms to confirm the good accuracy of the presented scheme.

Keywords: Cubic B-spline, quasi-interpolation, collocation method, second-order hyperbolic telegraph equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800
40 Orthogonal Regression for Nonparametric Estimation of Errors-in-Variables Models

Authors: Anastasiia Yu. Timofeeva

Abstract:

Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.

Keywords: Grade point average, orthogonal regression, penalized regression spline, locally weighted regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
39 Spline Basis Neural Network Algorithm for Numerical Integration

Authors: Lina Yan, Jingjing Di, Ke Wang

Abstract:

A new basis function neural network algorithm is proposed for numerical integration. The main idea is to construct neural network model based on spline basis functions, which is used to approximate the integrand by training neural network weights. The convergence theorem of the neural network algorithm, the theorem for numerical integration and one corollary are presented and proved. The numerical examples, compared with other methods, show that the algorithm is effective and has the characteristics such as high precision and the integrand not required known. Thus, the algorithm presented in this paper can be widely applied in many engineering fields.

Keywords: Numerical integration, Spline basis function, Neural network algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2928
38 Visualization of Sediment Thickness Variation for Sea Bed Logging using Spline Interpolation

Authors: Hanita Daud, Noorhana Yahya, Vijanth Sagayan, Muizuddin Talib

Abstract:

This paper discusses on the use of Spline Interpolation and Mean Square Error (MSE) as tools to process data acquired from the developed simulator that shall replicate sea bed logging environment. Sea bed logging (SBL) is a new technique that uses marine controlled source electromagnetic (CSEM) sounding technique and is proven to be very successful in detecting and characterizing hydrocarbon reservoirs in deep water area by using resistivity contrasts. It uses very low frequency of 0.1Hz to 10 Hz to obtain greater wavelength. In this work the in house built simulator was used and was provided with predefined parameters and the transmitted frequency was varied for sediment thickness of 1000m to 4000m for environment with and without hydrocarbon. From series of simulations, synthetics data were generated. These data were interpolated using Spline interpolation technique (degree of three) and mean square error (MSE) were calculated between original data and interpolated data. Comparisons were made by studying the trends and relationship between frequency and sediment thickness based on the MSE calculated. It was found that the MSE was on increasing trends in the set up that has the presence of hydrocarbon in the setting than the one without. The MSE was also on decreasing trends as sediment thickness was increased and with higher transmitted frequency.

Keywords: Spline Interpolation, Mean Square Error, Sea Bed Logging, Controlled Source Electromagnetic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
37 Line Heating Forming: Methodology and Application Using Kriging and Fifth Order Spline Formulations

Authors: Henri Champliaud, Zhengkun Feng, Ngan Van Lê, Javad Gholipour

Abstract:

In this article, a method is presented to effectively estimate the deformed shape of a thick plate due to line heating. The method uses a fifth order spline interpolation, with up to C3 continuity at specific points to compute the shape of the deformed geometry. First and second order derivatives over a surface are the resulting parameters of a given heating line on a plate. These parameters are determined through experiments and/or finite element simulations. Very accurate kriging models are fitted to real or virtual surfaces to build-up a database of maps. Maps of first and second order derivatives are then applied on numerical plate models to evaluate their evolving shapes through a sequence of heating lines. Adding an optimization process to this approach would allow determining the trajectories of heating lines needed to shape complex geometries, such as Francis turbine blades.

Keywords: Deformation, kriging, fifth order spline interpolation, first, second and third order derivatives, C3 continuity, line heating, plate forming, thermal forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
36 Variational Evolutionary Splines for Solving a Model of Temporomandibular Disorders

Authors: Alberto Hananel

Abstract:

The aim of this work is to modelize the occlusion of a person with temporomandibular disorders as an evolutionary equation and approach its solution by the construction and characterizing of discrete variational splines. To formulate the problem, certain boundary conditions have been considered. After showing the existence and the uniqueness of the solution of such a problem, a convergence result of a discrete variational evolutionary spline is shown. A stress analysis of the occlusion of a human jaw with temporomandibular disorders by finite elements is carried out in FreeFem++ in order to prove the validity of the presented method.

Keywords: Approximation, evolutionary PDE, finite element method, temporomandibular disorders, variational spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585