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Abstract—The aim of this work is to modelize the occlusion of a
person with temporomandibular disorders as an evolutionary equation
and approach its solution by the construction and characterizing
of discrete variational splines. To formulate the problem, certain
boundary conditions have been considered. After showing the
existence and the uniqueness of the solution of such a problem, a
convergence result of a discrete variational evolutionary spline is
shown. A stress analysis of the occlusion of a human jaw with
temporomandibular disorders by finite elements is carried out in
FreeFem++ in order to prove the validity of the presented method.

Keywords—Approximation, evolutionary PDE, finite element
method, temporomandibular disorders, variational spline.

I. INTRODUCTION

THE objective of this paper is intended to serve as

a step to solve an evolutionary problem of a patient

with temporomandibular disorders by the developing of a

variational method. With regard to the approximation of curves

and surfaces, we follow the methodology of [1] for variational

approximation using methods from boundary problems and

considering the finite element method. The mathematical

model is derived using some facts supported by Dentistry,

although it should be noted that there are not neither enough

studies to date nor relevant information of the mathematical

modeling of these issues, however it is possible to consider

more than a hundred variables associated with them. This

was the initial point for the research of this topic. With

a first study in Multivariate Statistics to manipulate local

groups of disorders, we complemented and extended the

analysis carried out by other authors (see [2], [3]). A Factor

Analysis was chosen for doing this task, obtaining 11 groups

of patterns. After performing Factor Analysis to the problem

of temporomandibular disorders from variables detected in

a sample of patients, determining factors associated with

different sets of variables required the implementation of a

computer system based on the diagnosis of symptoms and

signs for the determination of groups of relevant variables in

the 11 factors found, but it was merely insufficient a classic

system. Given the variable nature of examiners and examinees,

it was difficult to obtain results without the integration of some

degree of uncertainty, in consequence the intervention of an

artificial intelligence system was necessary. That is why, in

order to optimize the obtaining results, the original system

was transformed into a fuzzy expert system for the diagnosis,

applicable to any test subject which meets the exclusion

criteria sample warned in [4]. This fuzzy expert system
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provided some indicators of membership of the progress of

some of the factors of the disorder from which the test

subject can be affected. Because of the lack of graphical

or visual components of the developed classic systems from

which patients does not look identified, it was necessary to

build a prototype human jaw, using CAD, adaptable to any

individual state in despite of the state of the disorder, in order

to achieve a better diagnosis thereof. This objective required

the coupling of some components as physical forces, material

properties, and, in particular, the geometry of the curves used

in its two-dimensional design for forming solid from numerous

scans of a patient.

The structure of this study will be as follows: In the second

section, we are going to study the Mathematical modeling

of the occlusion process as an evolutionary problem and the

determination of the variational formulation associated and

will be studied into two parts. During the first part we will

define the dental terminology that will be used in rest of

the paper as temporomandibular disorder (TMD), outlining

necessary topics for the understanding and the subsequent

construction of the mathematical model of the occlusion.

Throughout this section will be necessary to review some

definitions like the proper of the system of data collection

of signs and symptoms of a patient with temporomandibular

disorder for the definition of the functions of compact support

functions that have to do with the density of the forces

needed in the model formulation. The second part, for the

understanding the results of the process of occlusion some

concepts like position, motion, deformation, displacement,

stress and all physical concepts necessary for are defined.

Furthermore, the assumptions of the occlusion model are

described in the same way that the definition of the jaw, the

boundary conditions and the forces involved in the process.

Two problems of partial differential equations are formulated,

one quasi-static and one dynamic, obtaining an evolutionary

equation with contact conditions at the boundary, whose

numerical solution is the main topic of the last section of

the paper. In the following section we are going to design

of an algorithm for numerical solution of variational problem

formulated by finite differences in time and finite elements

in space. We will present a set of theorems that will be

demonstrated in Appendix in order to obtain convergency. The

novelty of this model lies in the fact that we can chose a set

of differential operators in order to transform an evolutionary

problem in a variational problem from a constitutive law.

The functional spaces and the variational formulation of the

problem above mentioned are also studied. The result of

existence and uniqueness of it and the convergence of the

discrete solution to the exact solution of the original problem
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are performed. In the fourth section, after introducing the

physical properties of the mandible in its constitutive version,

the analysis of forces in the temporomandibular joint, and

the explanation of each force used in the simulation we will

show the results brought by the programming the previous

algorithm in a suitable software to support the paper. Some

simulations are made in order to construct, by variational

methods with mesh, the mathematical model of occlusion of

a patient with temporomandibular disorders, and the analysis

of deformation and displacements to compare the obtained

results with dental expected results by experts as can be

seen in [5]. Finally, we will present the conclusions of the

analysis focusing on the similarity of the numerical results that

contrasts the assumptions made in this paper suggesting that its

improvement under more realistic assumptions can serve for

future research of chronic degenerative diseases in Dentistry,

and in general in the field of Medicine.

II. MODELING THE OCCLUSION PROCESS

A. The Model

Let Ω ⊂ R
3 be the domain occupied by a jaw with boundary

Γ = ∂Ω, which by its own nature will be considered as the

outer surface (see [6]). Let εij , i = 1, . . . , 3, j = 1, . . . , 3
be the deformation. We assume the jaw is a homogeneous

linear elastic isotropic solid so that the deformation is entirely

elastic, hence body recovers its original shape upon removal

of the occlusal force that causes deformation [7]. Due to the

characteristics of the temporomandibular joint (TMJ) [8] and

the rigidity of the temporal bone, we use an unilateral contact

condition without friction in the upper part of left condyle.

The displacement is restricted by the glenoid fossa and thus

displacement in the tangential direction is produced without

friction stress (see [9], [10]).

Let us consider the equilibrium of a body in space and a

part of the boundary without including the support friction.

If contact occurs then the reaction g is opposed to the outer

normal to the body. If then we denote by σn =
3∑

i=1

gini, un =

3∑
i=1

uini, where un is the normal direction, and σn the normal

stress, we have σn ≤ 0;un ≤ 0;σnun = 0 i.e. on frictionless

contact problem (see [11]-[12]):{
σn ≤ 0 → un = 0, contact,

un ≤ 0 → σn = 0, no contact.

Therefore, we need to partition Γ into three sets:

• The surface area where occlusal contact may occur,

denoted by ΓC (see [10] for details about molars and

condyles).

• The part of the boundary where there are not

displacement u, denoted by ΓD (u = 0 on ΓD).

• The disjoint union of nine mandibular surfaces where

different muscles can act (superficial masseter (SM),

deep masseter (DM), medial pterygoid (MP), anterior

temporalis (AT), middle temporalis (MT), posterior

temporalis (PT), inferior pterygoid (IP), superior

pterygoid (SP) and anterior digastric (AD)), each

separately, denoted by ΓM (see Table I).

ΓC admits two parts: the upper side of the left condyle Γc
C

and the upper side of the molar Γm
C (see [13], [14]). ΓD will

not be partitioned because in clenching the right condyle is

always in contact with the maxillary. Then, Γ can be written

as Γ = (Γc
C ∪ Γm

C ) ∪ ΓD ∪ ΓM .

For each point of the jaw we consider the displacement

vector u(x) = (ui(x)), where ui(x) denotes the displacement

of x in the direction OXi, for each i = 1, . . . , 3.

We do not attempt to consider the weight of the jaw in this

model because it does not have very influence on deformation

(see [15]); hence, the components of the traction vector that

we consider on ΓM are gi, i = 1, . . . , 3 (see [16]).

Due to elastic properties of the bone we consider

Lame-Hooke law

σij = σij(u) =
Eν

(1 + ν)(1− 2ν)

(
3∑

k=1

εkk(u)

)
δij +

E

1 + ν
εij(u),

(1)

for each i = 1, . . . , 3, j = 1, . . . , 3, where εij(u) =
1

2

(
∂uj

∂xi
+

∂ui

∂xj

)
, ν is the Poisson’s ratio, E is the Young’s

modulus and δij is the Kronecker delta. We consider that

the jaw has the same physical properties in all directions

(isotropic), then (1) can be expressed compactly as⎛
⎜⎜⎜⎜⎜⎜⎝

σ11

σ22

σ33

σ12

σ13

σ23

⎞
⎟⎟⎟⎟⎟⎟⎠

=
E

1 + ν

⎛
⎜⎜⎝

1−ν
1−2ν

ν
1−2ν

ν
1−2ν

ν
1−2ν

1−ν
1−2ν

ν
1−2ν

ν
1−2ν

ν
1−2ν

1−ν
1−2ν

I3

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ε11
ε22
ε33
ε12
ε13
ε23

⎞
⎟⎟⎟⎟⎟⎟⎠

with I3 the identity matrix of order 3. Furthermore, since

occlusion is a process where there are no substantial variation

of forces in time it becomes steady, and thus there is no

inertial effects related to acceleration. These properties define

a quasi-static problem given by −
3∑

j=1

∂σij

∂xj
= fi, with σij

is the stress tensor, and fi are the components of the body

forces, for each i = 1, . . . , 3.

In the case of considering inertia effects, fi must be written

in the form fi = −ρ
∂2ui

∂t2
, for each i = 1, . . . , 3, where ρ is

the mass density of jaw bone [17].

Imposing boundary conditions on ΓM , we have

3∑
j=1

σij · nj = gi, i = 1, . . . , 3,

where nj is the outer vector with director cosines as

components (see Table I). Note that only non-positive values of

normal stress are allowed on ΓC . We suppose that the frictional

force is negligible, so it can be described by the equations

στi =
3∑

j=1

σijnj − σnni = 0, i = 1, . . . , 3,

where στi is the shear stress.
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TABLE I
MAGNITUDES OF MUSCLE LOADS USED IN FE MODEL OF UNILATERAL RIGHT MOLAR CLENCHING TYPE (RMOL) [10]

NODES FACTOR MAGNITUDES-RMOL (for composing fuzzy f ) DIRECTION COSINES (for composing fuzzy g)
R L R L [N] R L R L

SCALE W X Y Z X Y Z X Y Z X Y Z
SM 59 59 0.72 0.60 190.4 -0.48 2.05 0.97 0.40 1.71 0.81 -0.20 0.88 0.41 0.20 0.88 0.41
DM 38 38 0.72 0.60 81.6 -0.84 1.17 -0.55 0.70 0.97 -0.46 -0.54 0.75 -0.35 0.54 0.75 -0.35
MP 44 43 0.84 0.60 174.8 1.62 2.63 1.24 -1.18 1.92 0.90 0.48 0.79 0.37 -0.48 0.79 0.37
AT 43 40 0.73 0.58 158.0 -0.40 2.65 0.11 0.34 2.26 0.10 -0.14 0.98 0.04 0.14 0.98 0.04
MT 18 18 2.97 -1.77 0.78 0.66 0.67 95.6 -0.77 2.93 -1.75 -0.22 0.83 -0.50 0.22 0.83 -0.50
PT 15 15 0.59 0.39 75.6 -0.62 1.41 -2.54 0.41 0.93 -1.68 -0.20 0.47 -0.85 0.20 0.47 -0.85
IP 5 5 0.30 0.65 66.9 2.52 -0.69 3.03 -5.47 -1.51 6.58 0.63 -0.17 0.75 -0.63 -0.17 0.75
SP 4 4 0 0 28.7 0 0 0 0 0 0 0.76 0.07 0.64 -0.76 0.07 0.64
AD 8 8 0 0 40.0 0 0 0 0 0 0 -0.24 -0.23 -0.94 0.24 -0.23 -0.94

Then we have the problem:

−
3∑

j=1

∂σij(u)

∂xj
= fi in Ω, i = 1, . . . , 3,

u = 0 on ΓD,
3∑

j=1

σij(u)nj = gi on ΓM , i = 1, . . . , 3,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

un =
3∑

i=1

uini ≤ 0, σn =
3∑

i=1

3∑
j=1

σijninj ≤ 0,

unσn = 0,

στi =

3∑
j=1

σijnj − σnni = 0, i = 1, . . . , 3, on ΓC .

If we consider the inertial effect of acceleration and the

condition that the outer normal vector at a point on the surface

is constant with respect to time and varies only according to

its position during a short interval of time [0, T ], T > 0, then

the problem (2)-(II-A) can be stated as follows.

B. The Problem
Find u : Ω× [0, T ] → R

3, with u(x, t) = (ui(x, t)),
i = 1, . . . , 3, such that:

3∑
j=1

∂σij

∂xj
(u(x, t)) = ρ

∂2ui

∂t2
(x, t) in Ω× [0, T ],

u(x, t) = 0, on ΓD × [0, T ],
3∑

j=1

σij(u(x, t))nj(x) = gi(x, t), on ΓM × [0, T ],

⎧⎪⎪⎨
⎪⎪⎩
un(x, t) ≤ 0, σn(x, t) ≤ 0, un(x, t)σn(x, t) = 0,

στ (x, t) = 0, on ΓC × [0, T ],

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0, in Ω.

For each i = 1, . . . , 3, we have to solve the set of partial

differential equations:

ρ
∂2ui

∂t2
=

3∑
j=1

∂σij

∂xj
(u).

From (1) we have

σij =
Eν

(1 + ν)(1− 2ν)

(
3∑

k=1

εkk(u)

)
δij +

E

1 + ν
(εij),

and by substituting we obtain

σij =
Eν

(1 + ν)(1− 2ν)

(
3∑

k=1

1

2

(
∂uk

∂xk
+

∂uk

∂xk

))
δij+

E

1 + ν

1

2

(
∂uj

∂xi
+

∂ui

∂xj

)
,

(2)

if we denote λ =
Eν

(1 + ν)(1− 2ν)
, μ =

E

2(1 + ν)
, by using

(2), we deduce that

σij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
λ

(
3∑

k=1

∂uk

∂xk

)
+ 2μ

(
∂ui

∂xi

)
, if i = j,

μ

(
∂uj

∂xi
+

∂ui

∂xj

)
, if i �= j.

Applying derivatives to σij this implies

∂σij

∂xj
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ

⎛
⎝ 3∑

j=1

∂2uj

∂xi∂xj

⎞
⎠+ 2μ

(
∂2ui

∂x2
i

)
, if j = i,

μ

(
∂2uj

∂xi∂xj
+

∂2ui

∂x2
j

)
, if j �= i.

which means

∂σij

∂xj
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ

(
∂2ui

∂x2
i

)
+ λ

3∑
j �=i

∂2uj

∂xi∂xj
+

μ

(
∂2ui

∂x2
i

)
+ μ

3∑
j=i

∂2uj

∂x2
i

, if j = i,

μ

(
∂2uj

∂xi∂xj
+ μ

∂2ui

∂x2
j

)
, if j �= i.

and consequently

∂σij

∂xj
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(λ+ μ)
∂2ui

∂x2
i

+ λ

3∑
j �=i

∂2uj

∂xi∂xj
+ μ

(
∂2ui

∂x2
i

)
,

if j = i,

μ

(
∂2uj

∂xi∂xj
+ μ

∂2ui

∂x2
j

)
, if j �= i.
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By adding the derivatives
∂σij

∂xj
, for each j = 1, . . . , 3 we have

3∑
j=1

∂σij

∂xj
=(λ+ μ)

∂2ui

∂x2
i

+ λ
3∑

j=1
j �=i

∂2uj

∂xi∂xj
+

μ

3∑
j=1
j �=i

∂2uj

∂xi∂xj
+ μ

∂2ui

∂x2
i

+ μ
3∑

j=1
j �=i

∂2ui

∂x2
j

,

since

3∑
j=1

∂σij

∂xj
=

(λ+ μ)
∂2ui

∂x2
i

+ (λ+ μ)

3∑
j=1
j �=i

∂2uj

∂xi∂xj
+ μ

⎛
⎜⎜⎝

3∑
j=1
j �=i

∂2uj

∂x2
j

+
∂2ui

∂x2
i

⎞
⎟⎟⎠ ,

we obtain

3∑
j=1

∂σij

∂xj
= (λ+ μ)

⎛
⎜⎜⎝

3∑
j=1
j �=i

∂2uj

∂xi∂xj
+

∂2ui

∂x2
i

⎞
⎟⎟⎠+ μ

3∑
j=1

∂2ui

∂x2
j

,

or equivalently

3∑
j=1

∂σij

∂xj
= (λ+ μ)

3∑
j=1

∂2uj

∂xi∂xj
+ μ

3∑
j=1

∂2ui

∂x2
j

,

or

3∑
j=1

∂σij

∂xj
= (λ+ μ)

⎛
⎝ ∂

∂xi

⎛
⎝ 3∑

j=1

∂uj

∂xj

⎞
⎠
⎞
⎠+ μΔui, (3)

it turns out from the divergence of a vector that

3∑
j=1

∂σij

∂xj
= (λ+ μ)

(
∂

∂xi
divu

)
+ μΔui.

Thus, for each i = 1, . . . , 3 the system becomes

ρ
∂2ui

∂t2
= (λ+ μ)

∂

∂xi
(divu) + μΔui,

or in vector form

ρutt = (λ+ μ)∇divu+ μΔu,

which is also the solution of the variational problem:

Find u : Ω → R
3, with u(0) = 0,

∂u

∂t
(0) = 0 in Ω and

u(t) = 0 in [0, T ], on ΓD, such that for each v : Ω → R
3

with v = 0 on ΓD we have

ρ

∫
Ω

utt(x, t) · v + λ

∫
Ω

(∇ · u(x, t))(∇ · v(x))+

2μ

∫
Ω

∂xu(x, t) : ∂xv(x) +

∫
ΓM

αg(uαg
− u) · v =

∫
Ω

0 · v.

III. PROPOSED METHODOLOGY

A. The Proposed Method: Hananel’s Method

To solve the previous problem we follow two steps, first we

split (3) obtaining⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∂2u1

∂t2
= μ(

∂2u1

∂x2
1

+
∂2u1

∂x2
2

+
∂2u1

∂x2
3

)+

(λ+ μ)

(
∂2u1

∂x2
1

+
∂2u2

∂x1∂x1
+

∂2u3

∂x1∂x3

)

ρ
∂2u2

∂t2
= μ(

∂2u2

∂x2
1

+
∂2u2

∂x2
2

+
∂2u2

∂x2
3

)+

(λ+ μ)

(
∂2u1

∂x1∂x2
+

∂2u2

∂x2
2

+
∂2u3

∂x2∂x3

)

ρ
∂2u3

∂t2
= μ(

∂2u3

∂x2
1

+
∂2u3

∂x2
2

+
∂2u3

∂x2
3

)+

(λ+ μ)

(
∂2u1

∂x1∂x3
+

∂2u2

∂x2∂x3
+

∂2u3

∂x2
3

)

(4)

and second, we shall consider this system as constructed with

a double differential operator in such way that:

u =

⎛
⎝ u1(x, t)

u2(x, t)
u3(x, t)

⎞
⎠ ∂(1,0,0)

x−→

⎛
⎜⎜⎜⎜⎜⎜⎝

∂u1

∂x1
(x, t)

∂u2

∂x1
(x, t)

∂u3

∂x1
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎠

∂(1,0,0)
x−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2u1

∂x2
1

(x, t)

∂2u2

∂x2
1

(x, t)

∂2u3

∂x2
1

(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and by multiplying it by a matrix of the form

a(1,0,0),(1,0,0) =

⎛
⎝ μ+ (μ+ λ) 0 0

0 μ 0
0 0 μ

⎞
⎠

we obtain ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(μ+ (λ+ μ))
∂2u1

∂x2
1

(x, t)

μ
∂2u2

∂x2
1

(x, t)

μ
∂2u3

∂x2
1

(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

which can be defined as

a(1,0,0),(1,0,0)∂
(1,0,0)
x (∂(1,0,0)

x u(x, t)). (5)

Similarly,

u =

⎛
⎝ u1(x, t)

u2(x, t)
u3(x, t)

⎞
⎠ ∂(0,1,0)

x−→

⎛
⎜⎜⎜⎜⎜⎜⎝

∂u1

∂x2
(x, t)

∂u2

∂x2
(x, t)

∂u3

∂x2
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎠

∂(0,1,0)
x−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2u1

∂x2
2

(x, t)

∂2u2

∂x2
2

(x, t)

∂2u3

∂x2
2

(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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and by multiplying it by a matrix of the form

a(0,1,0),(0,1,0) =

⎛
⎝ μ 0 0

0 μ+ (μ+ λ) 0
0 0 μ

⎞
⎠ ,

we obtain ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ
∂2u1

∂x2
2

(x, t)

(μ+ (λ+ μ))
∂2u2

∂x2
2

(x, t)

μ
∂2u3

∂x2
3

(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

which can be defined as

a(0,1,0),(0,1,0)∂
(0,1,0)
x (∂(0,1,0)

x u(x, t)). (6)

Similarly,

u =

⎛
⎝ u1(x, t)

u2(x, t)
u3(x, t)

⎞
⎠ ∂(0,0,1)

x−→

⎛
⎜⎜⎜⎜⎜⎜⎝

∂u1

∂x3
(x, t)

∂u2

∂x3
(x, t)

∂u3

∂x3
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎠

∂(0,0,1)
x−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2u1

∂x2
3

(x, t)

∂2u2

∂x2
3

(x, t)

∂2u3

∂x2
3

(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and by multiplying it by a matrix of the form

a(0,0,1),(0,0,1) =

⎛
⎝ μ 0 0

0 μ 0
0 0 μ+ (μ+ λ)

⎞
⎠

we obtain ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(μ+ (λ+ μ))
∂2u1

∂x2
3

(x, t)

μ
∂2u2

∂x2
3

(x, t)

(μ+ (λ+ μ))
∂2u3

∂x2
3

(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

which can be defined as

a(0,0,1),(0,0,1)∂
(0,0,1)
x (∂(0,0,1)

x u(x, t)). (7)

Overall process is similar to that used for finding (7). For more

details on obtaining this equation and the rest of the proof, see

Appendix (A).

If we denote by H1(Ω) the Sobolev space of order 1
of continuous classes of functions u ∈ L2(Ω), with weak

derivatives ∂iu, of order 1, |i| ≤ 1, for any i = (i1, i2, i3) ∈
N

3, |i| = i1 + i2 + i3 and ∂i
xu(x) =

∂|i|u
∂xi1

1 ∂xi2
2 ∂xi3

3

, for any

x = (x1, x2, x3) ∈ Ω.

Instead of writing the sum of the expressions: (5)-(7),

(16)-(21) it is convenient to write∑
|i|,|j|=1

aij∂
j
x(∂

i
xu(x, t))

which is equal to the following components of a vector

μ

(
3∑

i=1

∂2u1

∂x2
i

)
+ (λ+ μ)

(
∂2u1

∂x2
1

+
∂2u2

∂x1∂x1
+

∂2u3

∂x1∂x3

)

μ

(
3∑

i=1

∂2u2

∂x2
i

)
+ (λ+ μ)

(
∂2u1

∂x1∂x2
+

∂2u2

∂x2
2

+
∂2u3

∂x2∂x3

)

μ

(
3∑

i=1

∂2u3

∂x2
i

)
+ (λ+ μ)

(
∂2u1

∂x1∂x3
+

∂2u2

∂x2∂x3
+

∂2u3

∂x2
3

)
(8)

considering the vector ⎛
⎜⎜⎜⎜⎜⎜⎝

ρ
∂2u1

∂t2

ρ
∂2u2

∂t2

ρ
∂2u3

∂t2

⎞
⎟⎟⎟⎟⎟⎟⎠

(9)

and by comparing (8) and (9), we obtain (4) that can be written

as

ρutt = (λ+ μ)∇divu+ μΔu,

which is the linear system consisting of equations

∂t(ρ∂tu(x, t)) = ρ∂ttu(x, t) =
∑

|i|,|j|=1

aij∂
j
x(∂

i
xu(x, t)),

therefore there exists a variational problem

Ltu(x, t) + Lxu(x, t) = 0, x ∈ Ω, t ∈ (0, T ),

where Lx : Ω → L2(Ω× (0, T ))×H2((0, T )) is a differential

operator given by

Lxu(x, t) = −
∑

|i|,|j|=1

aij∂
j
x(∂

i
xu(x, t)), x ∈ Ω, t ∈ (0, T ),

where aij ∈ C |j|(Ω) and aij = aji for all |i|, |j| ≤ 1, and ∂i
x

is a partial derivative of order |i| with respect to x, similarly,

Lt : H1(Ω × (0, T )) → Ω × L2((0, T )) is an differential

operator given by

Ltu(x, t) = ∂t(ρ∂tu(x, t)) = ρ∂ttu(x, t), x ∈ Ω, t ∈ (0, T ),

with ρ ∈ R, which is a problem with the same boundary

conditions of Problem (II-B), in consequence to solve this

problem becomes to solve the Problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ltu(x, t) + Lxu(x, t) = 0, x ∈ Ω, t ∈ (0, T ),

u(x, 0) = 0, x ∈ Ω,
∂u

∂t
(x, 0) = 0, x ∈ Ω,

u(x, t) = g(x, t), x ∈ Γ, t ∈ (0, T ).
(10)

To solve the problem we follow two steps, first we solve the

problem by discretizing with respect to time, i.e. the variable

t, this means we take an uniform partition {t0 = 0 < t1 <
· · · < TR = T} of [0, T ], and second, for each i = 1, . . . , R,

we treat to find an unique solution by discretizing the position,

depending on i, i.e. the variable x, this means we take a

partition of Ω.
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B. Discretizing in Time

Now, we consider an uniform partition {t0 = 0 < t1 <
· · · < TR = T} of [0, T ] of diameter s = ti − ti−1

for i = 1, . . . , R. Let i ∈ {1, . . . , R} fixed, we are going

to approximate the derivatives of the functions u by finite

difference in each ti. So, we have

ut(x, ti) ≈ u(x, ti + s)− u(x, ti)

s
.

Then, for each i = 1, . . . , R − 1, and each x ∈ Ω the

differential operator Lt becomes

Ltu(x, ti) =

ρ
u(x, ti + 2s)− u(x, ti + s)

s
− ρ

u(x, ti + s)− u(x, ti)

s
s

,

which is equivalent to consider

Ltu(x, ti) = ρ
u(x, ti + 2s)− 2u(x, ti + s) + u(x, ti)

s2

Hence, to solve the problem (10) becomes to solve i variational

problems, for i, . . . , R− 1,⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ltu(x, ti) + Lxu(x, ti) = 0, x ∈ Ω,

u(x, 0) = 0, x ∈ Ω,

ut(x, 0) = 0, x ∈ Ω,

u(x, ti) = g(x, ti), x ∈ Γ.

C. Discretizing in Space

Now, for each i = 1, . . . , R − 1, let us consider the

differential operator defined in H2(Ω×(0, T )) by (Li
xu)(x) =

Lxu(x, ti) and the differential operator defined in H1(Ω ×
(0, T )) by (Li

tu)(x) = Ltu(x, ti). Moreover, we define

(u, v)x,i =
∑

|i|,|j|≤n

(aij(·)∂i
xu(·, ti), ∂j

xv(·, ti))0,Ω +

ρ(∂tu(ti, ·), ∂tv(ti, ·))0,Ω
and we assume that∑

|i|,|j|=0

(ξi)taijξ
j ≥ 0, ∀x ∈ Ω, (11)

and that there exists ν > 0 such that∑
|i|,|j|=1

(ξi)taijξ
j ≥ ν 〈ξ〉22 , ∀x ∈ Ω, (12)

for all ξ = (ξ1, ξ2, ξ3) ∈ R
3, where ξi = ξi11 ξi22 , for any

i = (i1, i2, i3) ∈ N
3.

Due to (12), the differential operator Li
x is said to be strongly

elliptic on Ω.

It can be shown that according to the hypotheses (11)-(12) the

bilinear form (·, ·)x,i defines a semi-inner product on H1(Ω×
(0, T )) whose associated semi-norm is denoted by |u|x,i =

(u, u)
1
2
x,i.

Suppose are given:

• an ordered set Ar = {a1, . . . , am} of m = m(r) ≥ 0
distinct points of Ω;

• an ordered set BN = {b1, . . . , bN} of N ∈ N
∗ distinct

points of Γ, none of which is a geometric vertex of Ω;

• a data vector β = (β1, . . . , βm) ∈ R
m;

• a finite dimensional space Xh made up over a partition

Th of Ω verifying that the length of Th ≤ h and h → 0
as dim(Xh) → +∞.

• For each non-negative h,Xh will be a finite element

space.

If Ω is not poligonal, we approximate Ω by Ωh for each h ∈
H , in such way that lim

h→0
Ω \ Ωh = 0 and we construct Th

over Ωh.

We define the operator ρ : H1(Ω) → R
m, given by ρ(v) =

(v(aj))1≤j≤m, the convex set HNh
i = {v ∈ Xh : v(bj) =

g(bj , ti), j = 1, . . . , N}, the vectorial subspace HNh
0 = {v ∈

Xh : v(bj) = 0, j = 1, . . . , N} and τv = (v(bj))j=1,...,N .

Then, we suppose that

ker ρ ∩ P0(Ω) = {0}.
Definition 1. We say that σi

h is a discrete variational
evolutionary PDE spline associated with Li

x, B
N , Ar, β y

ε > 0, if σi
h is a solution of the problem{

σi
h ∈ HNh

i ,

∀v ∈ HNh
i , Ji(σ

i
h) ≤ Ji(v),

(13)

where Ji is the functional defined on H1(Ω) by

Ji(v) = 〈ρ(v)− β〉2m + ε(|v|2x,i),
where ε is a non-negative real number.

The next result shows the uniqueness of Problem (13).

Theorem 1. Problem (13) admits a unique solution which
is also the unique solution of the variational problem: find
σi
h ∈ HNh

i such that

∀v ∈ HNh
0 ,

〈
ρσi

h, ρv
〉
m
+ ε(σi

h, v)x,i = 〈β, ρv〉m .

See Appendix (B) for proof.

Theorem 2. There exists a unique (σi
h, λ) ∈ HNh

i ×R
N such

that〈
ρσi

h, ρv
〉
m
+ ε(σi

h, v)x,i + 〈τv, λ〉N = 〈β, ρv〉m , (14)

for all v ∈ HNh
i , where σi

h is the unique solution of Problem
(13).

See Appendix (C) for proof.

D. Discrete Solution in Space

We are now going to obtain for each i = 1, . . . , R, the

expression of the discrete variational spline σi
h.

We set h and we consider a partition Th of rectangles of Ω,

such that the points of BN are knots of Th. We number the

basis functions of Xh by {w1, . . . , wl}. We can then express

σi
h as the linear combination σi

h(x) =
I∑

j=1

γjwj(x), and if

we calculate the unknown coefficients γj , we then have the
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expression of σi
h.

By substituting in (14), we obtain, for all v ∈ HNh
i ,

I∑
j=1

γj
(〈ρwj , ρv〉m + ε(wj , v)x,i

)
+ 〈λ, τv〉N = 〈β, ρv〉m ,

subject to the constraints τ

⎛
⎝ I∑

j=1

γjwj

⎞
⎠ = y, which are

equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I∑
j=1

γj
(〈ρwj , ρwk〉m + ε(wj , wk)x,i

)
+ 〈λ, τwk〉N =

〈β, ρwk〉m , 1 ≤ k ≤ I,
I∑

j=1

γj (wj(bk)) = yk, 1 ≤ k ≤ N,

that is, a linear system with I+N equations and the unknowns

{γ1, . . . , γl, λ1, . . . , λN}.
Its matrix form is(

C D
DT 0

)(
γ
λ

)
=

(
f̂
y

)
,

where D = (djk)1≤j≤I,1≤k≤N , with djk = wj(bk),
C = (cjk)1≤j,k≤I , with cjk = 〈ρwj , ρwk〉m + ε(wj , wk)x,i,
γ = (γ1, . . . , γI)

T , λ = (λ1, . . . , λN )T , y = (y1, . . . , yN )T ,

f̂ = (〈β, ρw1〉m , . . . , 〈β, ρwI〉m)
T
.

If we call A = (wk(aj))1≤j≤m,1≤k≤I , f̂ = ATβ, and,

R = ((wj , wk)x,i)1≤j,k≤I , then C = ATA+ εR.

We have obtained a discrete-time solution, for each value ti,
as a spline function of a finite dimensional space. Therefore,

the overall solution is a set of surfaces in R
3, one for each

discrete value of time.

E. Convergence

Suppose that

sup
x∈Ω

min
a∈Ar

〈x− a〉2 = o

(
1

r

)
, as r → +∞. (15)

Let Δ = (n+2)!
n!2! be the dimension of Pn, with Pn designs the

space of polynomial functions of total degree n defined in Ω.

Then we have the following useful result.

Theorem 3. Suppose that Ω ⊂ R
3 is an open set with

Lipschitz-continuous boundary. Let Δ0 = {a01, . . . , a0Δ} be
a Pn−1-unisolvent set of points of Ω, with n ≥ 1. Then, there
exists η > 0 such that, if Tn denotes the set of Δ-uplas
G = {a1, . . . , aΔ} of points of Ω that verify the condition

∀j = 1, . . . ,Δ, 〈aj − a0j〉2 ≤ η,

the application

[[v]]Δ0
n =

⎛
⎝ Δ∑

j=1

|v(aj)|2 + |v|2x,i

⎞
⎠

1
2

,

defined for all Δ0 ∈ Tη is a norm over Hn(Ω) uniformly
equivalent over Tη to the usual norm ‖ · ‖n.

See Proposition 2.1 of [18] for proof.

Corollary 1. Suppose that the hypothesis for convergence (15)
holds and n > 1. Then, there exists η > 0 and, for all r ∈ N,
a subset Ar

0 of Ar such that, for all r ≥ η, the application
[[·]]0r , defined by

[[v]]0r =

⎛
⎝∑

a∈Ar
0

|v(a)|2 + |v|2x,i

⎞
⎠

1
2

,

is a norm of Hn(Ω) uniformly equivalent with respect to r,
to the norm ‖ · ‖n.

See Appendix (D) for proof.

Theorem 4. We suppose that (15) holds and

ε = o(rp), as r → +∞.

Then, one has

lim
r→+∞ ‖σi

h − ui‖n = 0.

See Appendix (E) for proof.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Considerations in the Numerical Simulation

For the numerical simulation we considered an arbitrary

individual which after the clinical analysis by system H

resulted with a TMD (see [3]).

The level design of the mandibular model [19] was

conducted by acquiring CT scans and its subsequent

reconstruction using curves and surfaces as can be seen in

[20]-[21] (Fig. 1). We considered a subject with 14 teeth

instead of 16, because the third molars do not usually sprout

in some people and many times these teeth do unstable the

analysis of temporomandibular disorders.

Fig. 1 Acquisition of CT scans and mandibular reconstruction

The system H processed the registration information and

determined through the membership function of a fuzzy

set related to the eleven factors of the Factorial Analysis

applied to the database sample and having a dental detailed

interpretation (see [3]). For modeling the biomechanics of

the jaw: the involved muscles, the physical properties and

the fuzzy components over the defined forces on muscles we

used MATLAB. To present the necessary conditions for the
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TABLE II
MANDIBULAR SURFACES AND ASSOCIATED TMD FACTORS

NR Mandibular section Lat Pos Affected factor(s)
2 Mandibular body F3,11

3 Ramus L F2

4 Condyle L F1−4,6−7,10

5 Apophysis L F9

6 Ramus R F2

8 Condyle R F1−4,6−7,10

10 Apophysis R F9

11 Central incisor R Lw F5,9

12 Central incisor L Lw F5,9

13 Lateral incisor L Lw F5,9

15 Lateral incisor R Lw F5,9

16 Canine R Lw F2,9

17 Canine L Lw F2,9

22 First premolar R Lw F9

24 First premolar L Lw F9

25 Second premolar L Lw F9

27 Second premolar R Lw F9

29 First molar L Lw F9

30 Mesial lingual cusp (*) L Lw F9

33 Vestibular cusp (*) L Lw F9

34 Mesial buccal cusp (*) L Lw F9

35 Disto vestibular cusp (*) L Lw F9

36 Disto lingual cusp (*) L Lw F9

37 First molar R Lw F9

38 Second molar L Lw F8−9

40 Second molar R Lw F8−9

implementation of the variational formulation of the problem

and its resolution by the Finite Method Element, we did a

connection between MATLAB and FreeFem++.

The original model developed included 102821 vertices,

2352 edges, 554752 tetrahedra and 40368 triangles, however

it should be noted that for the numerical simulation of this

work and its further analysis only 2095 vertices, 588 edges,

2523 triangles and 8668 tetrahedra were used instead.

Consequently, factors numbered as 3, 4, 5, 7, 8, 9 from

the eleven of the performed Factorial Analysis as shown in

[2], were able to provide numerical patterns according to their

degree of membership in order to generate of forces f , and, g,

needed for implementing the dynamic model in FreeFem++.

To simulate the impact it was assumed a density of strength

in the interval [0, T ], exponentially growing, g given by

g(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩μje

2

⎛
⎜⎜⎜⎝

11∑
i=1
i �=j

μi

⎞
⎟⎟⎟⎠(t−t0)

g0, if 0 ≤ t ≤ t0

0, if t > t0

which is a function of compact support where g0 ∈ R
3 is the

maximum intensity of the impact at the instant t0 > 0, where

j ∈ {j : μj = maxM}, with M = {μi : i ∈ {1, . . . , 11}},

such that μi ∈ [0, 1] is the degree of membership of their

associated factor, where for each x, we assigned a fuzzy set

X related to each of the boundary zones according to its

affected factor (see Table II where NR is the cardinality, Lat

is laterality: left and right, Pos is position: upper and lower,

and with * as first molar).

We consider for the simulation ‖g0‖ = 1000N/cm2, with

t0 = 1 and for the calculus, T = 1 and Δt = 0.01.

B. Stress and Deformation Analysis: Interpretation of
Results

To facilitate the visualization of the results we use

FreeFem++ where colorbar values in the figures correspond to

the intensity of the incidence of the stresses and displacements

on jaw movement of a patient with TMD. This analysis makes

it clear that every deformation of the jaw is not serious because

it is difficult to fracture by a simple clenching even in patients

with TMD (Fig. 2).

Fig. 2 Jaw movement of a patient with TMD. (Overlapping)

Fig. 3 shows the jaw-closing movements during chewing

where we can appreciate the small displacement of the

mandibular condyle (blue color) and the greatest displacement

of the anterior mandibular ramus and coronoid apophysis.

Thus, patients with TMD tend to experience pain, limited

movement, or asymmetric jaw and temporomandibular joint

sounds concentrated on the chin which can be seen in the

color bar of the plot (red color). Some incisors might be

affected in particularly bad cases (see [22]). Fig. 6 shows

the stress distribution during free opening and closing, and

during chewing of a patient with TMD. Only the area near

the Spix’s spine, in the condyle branch can suffer stress as

well as affecting the muscles and the TMD (see [23]).

Fig. 8 shows that the most affected area corresponds

to the left condyle, therefore is concluded that there is a

relationship between TMD and occlusal factors. There can also

be corroborating evidence related to a certain source of system

H; therefore, we should be interested not only in the Fricton

Index in order to obtain more complete results.

Fig. 4 shows that both condyles are affected with high

levels of heterogeneity. These results were very similar to

those obtained by Korioth [24] from stress distribution along

the condyle which becomes more intense, especially during

occlusion (see Fig. 5).

In the verification process the calculation results obtained

were compared with those from the research of Korioth
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Fig. 3 Analysis of Displacements

Fig. 4 Condylar affected branches

(see [24]). The calculations and measured results were

compared for validation. The comparisons were made using

conditions where contact occurs as well as loading patterns

(108 Pa) and jaw movements during occlusion (see [25]).

The simulation results of the maximum value of Von Mises

stress on the opposite condyle occlusion are shown when

we applied a load of 51.51× 106 Pa at ICP. When we

applied a lingual and distal load, the maximum value of Von

Mises on the opposite condyle increases (72.14× 106 Pa and

69.57× 106 Pa respectively).

Some occlusal conditions related to tiny eruption of the

third molar or second molar buccal crossbite has committed

to publish clinical study reports rather than by simulation to

prevent erroneous data [26].

Our simulation results show that the highest stress occurs

at the condyle (69.16× 106 Pa), similar to those obtained by

Fig. 5 Variation of stress in the condyles in different time instants

Fig. 6 Affected zones in the area of the molars, left and right condyles

Korioth (see [27]) whose value was 69.57× 106 Pa (see Figs.

6-8).

This study also emphasizes the presence of a different

variable that would involve the incisors, which should be

isolated for further analysis that according to the existing

dental literature is not considered and may also contribute to

the development of TMD as shown in Fig. 8.

An acceptable compatibility of the results proves that the

model can be applied with a TMD patient in practice.

V. CONCLUSION

In this paper, we have been developed a different

method for the approximation of surfaces as well as the

resolution of a boundary value problems for the detection of

temporomandibular disorders. We conclude that our results
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Fig. 7 Condylar branches affected with heterogeneous values

Fig. 8 Incisors as variables not considered in TMD

match with those expected by experts in previous studies.

Hence, we consider the presented variational method as a valid

tool to solving many PDEs.

APPENDIX

A. Proof of the Method (Final Part)

:

u
∂(1,0,0)
x−→

⎛
⎜⎜⎜⎜⎜⎜⎝

∂u1

∂x1
(x, t)

∂u2

∂x1
(x, t)

∂u3

∂x1
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎠

∂(0,1,0)
x−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2u1

∂x1∂x2
(x, t)

∂2u2

∂x1∂x2
(x, t)

∂2u3

∂x1∂x2
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

with a factor

a(1,0,0),(0,1,0) =

⎛
⎜⎜⎝

0
1

2
(λ+ μ) 0

1

2
(λ+ μ) 0 0

0 0 0

⎞
⎟⎟⎠

and the result ⎛
⎜⎜⎜⎜⎜⎝

1

2
(λ+ μ)

∂2u2

∂x1∂x2
(x, t)

1

2
(λ+ μ)

∂2u1

∂x1∂x2
(x, t)

0

⎞
⎟⎟⎟⎟⎟⎠ ,

and denoted by

a(1,0,0),(0,1,0)∂
(0,1,0)
x (∂(1,0,0)

x u(x, t)). (16)

the same with

u
∂(1,0,0)
x−→

⎛
⎜⎜⎜⎜⎜⎜⎝

∂u1

∂x1
(x, t)

∂u2

∂x1
(x, t)

∂u3

∂x1
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎠

∂(0,0,1)
x−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2u1

∂x1∂x3
(x, t)

∂2u2

∂x1∂x3
(x, t)

∂2u3

∂x1∂x3
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

with

a(1,0,0),(0,0,1) =

⎛
⎜⎜⎝

0 0
1

2
(λ+ μ)

0 0 0
1

2
(λ+ μ) 0 0

⎞
⎟⎟⎠

having ⎛
⎜⎜⎜⎜⎜⎜⎝

1

2
(λ+ μ)

∂2u2

∂x1∂x2
(x, t)

0

1

2
(λ+ μ)

∂2u1

∂x1∂x2
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎠

and denoted by

a(1,0,0),(0,0,1)∂
(0,0,1)
x (∂(1,0,0)

x u(x, t)). (17)

and the same for

u
∂(0,1,0)
x−→

⎛
⎜⎜⎜⎜⎜⎜⎝

∂u1

∂x2
(x, t)

∂u2

∂x2
(x, t)

∂u3

∂x2
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎠

∂(0,0,1)
x−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2u1

∂x2∂x3
(x, t)

∂2u2

∂x2∂x3
(x, t)

∂2u3

∂x2∂x3
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

with

a(0,1,0),(0,0,1) =

⎛
⎜⎜⎝

0 0 0

0 0
1

2
(λ+ μ)

0
1

2
(λ+ μ) 0

⎞
⎟⎟⎠ ,

obtaining ⎛
⎜⎜⎜⎜⎜⎜⎝

0

1

2
(λ+ μ)

∂2u3

∂x2∂x3
(x, t)

1

2
(λ+ μ)

∂2u2

∂x2∂x3
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎠
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and denoted by

a(0,1,0),(0,0,1)∂
(0,0,1)
x (∂(0,1,0)

x u(x, t)). (18)

Hence, the following results are shown:

u
∂(0,1,0)
x−→

⎛
⎜⎜⎜⎜⎜⎜⎝

∂u1

∂x2
(x, t)

∂u2

∂x2
(x, t)

∂u3

∂x2
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎠

∂(1,0,0)
x−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2u1

∂x1∂x2
(x, t)

∂2u2

∂x1∂x2
(x, t)

∂2u3

∂x1∂x2
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

consequently by multiplying the last vector for a matrix of the

form

a(0,1,0),(1,0,0) =

⎛
⎜⎜⎝

0
1

2
(λ+ μ) 0

1

2
(λ+ μ) 0 0

0 0 0

⎞
⎟⎟⎠

we have ⎛
⎜⎜⎜⎜⎜⎝

1

2
(λ+ μ)

∂2u2

∂x1∂x2
(x, t)

1

2
(λ+ μ)

∂2u1

∂x1∂x2
(x, t)

0

⎞
⎟⎟⎟⎟⎟⎠

which can be denoted by

a(0,1,0),(1,0,0)∂
(1,0,0)
x (∂(0,1,0)

x u(x, t)). (19)

The process is complemented by

u
∂(0,0,1)
x−→

⎛
⎜⎜⎜⎜⎜⎜⎝

∂u1

∂x3
(x, t)

∂u2

∂x3
(x, t)

∂u3

∂x3
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎠

∂(1,0,0)
x−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2u1

∂x1∂x3
(x, t)

∂2u2

∂x1∂x3
(x, t)

∂2u3

∂x1∂x3
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and by multiplying the vector for a matrix of the form

a(0,0,1),(1,0,0) =

⎛
⎜⎜⎝

0 0
1

2
(λ+ μ)

0 0 0
1

2
(λ+ μ) 0 0

⎞
⎟⎟⎠

we have ⎛
⎜⎜⎜⎜⎜⎜⎝

1

2
(λ+ μ)

∂2u2

∂x1∂x2
(x, t)

0

1

2
(λ+ μ)

∂2u1

∂x1∂x2
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎠

which can be denoted by

a(0,0,1),(1,0,0)∂
(1,0,0)
x (∂(0,0,1)

x u(x, t)). (20)

Finally,

u
∂(0,0,1)
x−→

⎛
⎜⎜⎜⎜⎜⎜⎝

∂u1

∂x3
(x, t)

∂u2

∂x3
(x, t)

∂u3

∂x3
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎠

∂(0,1,0)
x−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2u1

∂x2∂x3
(x, t)

∂2u2

∂x2∂x3
(x, t)

∂2u3

∂x2∂x3
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and by multiplying the vector for a matrix of the form

a(0,0,1),(0,1,0) =

⎛
⎜⎜⎝

0 0 0

0 0
1

2
(λ+ μ)

0
1

2
(λ+ μ) 0

⎞
⎟⎟⎠

we have ⎛
⎜⎜⎜⎜⎜⎜⎝

0

1

2
(λ+ μ)

∂2u3

∂x2∂x3
(x, t)

1

2
(λ+ μ)

∂2u2

∂x2∂x3
(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎠

which can be denoted by

a(0,0,1),(0,1,0)∂
(0,1,0)
x (∂(0,0,1)

x u(x, t)). (21)

B. Proof of Theorem 1

: We consider the application a : H1(Ω)×H1(Ω) → R

given by

a(u, v) = 2(〈ρu, ρv〉m + ε(u, v)x,i).

The form a(·, ·) is bilinear and symmetric in H1(Ω). From

(11) and (12) we have that a is coercive [28] and its continuity

is deduced from the continuity of ρ and (·, ·)x,i. Let ϕ(v) =
2(〈β, ρv〉), which is clearly linear and continuous in H1(Ω).
We conclude that there exists a unique σ ∈ HNh

i such that

a(σ,w − σ) ≥ ϕ(w − σ), for all w ∈ HNh
i , which implies

that a(σ, v) ≥ ϕ(v) for all v ∈ HNh
0 . As HNh

0 is a vectorial

subspace, then if v ∈ HNh
0 hence −v ∈ HNh

0 , and it follows

that a(σ,−v) ≥ ϕ(−v), for any v ∈ HNh
0 . We obtain that

a(σ, v) = ϕ(v) for any v ∈ HNh
0 . Furthermore, σ is the

minimum in HNh
i of the functional Φ(v) = 1

2a(v, v)− ϕ(v),

which is the minimum of Ji, since Φ(v) = Ji(v) − 〈β〉2m.

Hence we conclude the result.

C. Proof of Theorem 2

: Let us denote by {w1, . . . , wN} as the basis functions

of Xh associated with the degree of freedom {v(bj)}j=1,...,N .

For each v ∈ HNh
i , let w = v −

Nh∑
j=1

v(bj)wj . Then,

w ∈ Xh and for each k = 1, . . . , N , φk(w) = φk(v) −
N∑
j=1

v(bj)wj(bk) = 0, so τw = 0 and consequently, w ∈ HNh
0 .
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Let σi
h be the solution (13). Then, by Theorem 1, we have

σi
h ∈ HNh

i and〈
ρσi

h, ρw
〉
m
+ ε(σh, w)x,i = 〈β, ρw〉m ,

by substituting and by linearity, we obtain

〈β, ρv〉m =
〈
ρσi

h, ρv
〉
m
+ ε(σi

h, v)x,i +

N∑
j=1

(〈
β − ρσi

h, ρwj

〉
m
− ε(σi

h, wj)x,i
)
v(bj).

If we denote λ =
(〈
β − ρσi

h, ρwj

〉
m
− ε(σi

h, wj)x,i
)
j=1,...,N

,

then we conclude that〈
ρσi

h, ρv
〉
m
+ ε(σi

h, v)x,i + 〈λ, τv〉N = 〈β, ρv〉m ,

and (14) is verified. Now, we suppose that there exists λ, λ ∈
R

N such that (σi
h, λ) and (σi

h, λ) verify (14). Then〈
ρσi

h, ρv
〉
m
+ ε(σi

h, v)x,i + 〈λ, τv〉N = 〈β, ρv〉m ,〈
ρσi

h, ρv
〉
m
+ ε(σi

h, v)x,i +
〈
λ, τv

〉
N

= 〈β, ρv〉m ,

and, by substracting, we have
〈
λ− λ, τv

〉
N

= 0, ∀v ∈ HNh
i ,

from which we derive λ = λ and, hence, the uniqueness of

(σi
h, λ).

D. Proof of Theorem 1

: Let Δ0 = {a01, . . . , a0Δ} be anyone Pn−1-unisolvent

subset of Ω. From (15) for all r ∈ N an all j = 1, . . . ,Δ,

there exists arj ∈ Ar verifying

〈
aj − arj

〉
2
≤ 1

r
.

Let Ar
0 = {ar1, . . . , arΔ}. Then, it is sufficient to apply

Proposition 3, taking into account that for all r ≥ η, Ar
0 ∈ Tη ,

written [[·]]0r instead of [[·]]Ar
0

n .

We suppose that ε = ε(r). Let ui = u(x, ti), x ∈ Ω the

displacement function in time t = ti. Clearly ui ∈ HNh
i and

we denote by σi
h the evolutionary discrete variational spline

associated to Li
x, B

N , Ar, ρg y ε.

E. Proof of Theorem 4

: We know that Ji(σ
i
h) ≤ Ji(ui). This implies that〈

ρ(σi
h − ui)

〉2
m
+ ε(|σi

h|2x,i) ≤ ε(|ui|2x,i). (22)

Thus, we obtain

|σi
h|2x,i ≤ |ui|2x,i. (23)

Let J̃ be the functional defined above and let σ̃ be the

minimum of J̃ in HNh
i . Since σ̃ − ui ∈ H0, we have that

(σ̃, σi
h − ui)x,i = 0. (24)

By adding (σ̃, σ̃)x,i in both terms of (23) and by using (24),

we deduce that

|σi
h|2x,i + (σ̃, σ̃)x,i ≤ |ui|2x,i + 2(σ̃, σi

h − ui)x,i + (σ̃, σ̃)x,i

and we obtain |σi
h − σ̃|2x,i ≤ |ui − σ̃|2x,i. Hence, we conclude

that

|σi
h|x,i ≤ 2|ui − σ̃|x,i + 2|σ̃|x,i. (25)

In the same way we obtain from (22)〈
ρ(σi

h − ui)
〉2
m

≤ ε(|ui|2x,i)
or equivalently 〈

ρ(σi
h − ui)

〉2
m

≤ ε(|v|2x,i)
and again using (24) we obtain〈

ρ(σi
h − ui)

〉2
m

≤ ε(|ui|2x,i + 2(σ̃, σi
h − ui)x,i)

or〈
ρ(σi

h − ui)
〉2
m

≤ ε(|ui|2x,i− 2(σ̃, ui)x,i+2(σ̃, σi
h)x,i). (26)

We know that

2(σ̃, σi
h)x,i ≤ |σ̃|2x,i + |σi

h|2x,i.
Then, by (26) we deduce〈

ρ(σi
h − ui)

〉2
m

≤ ε(|ui|2x,i − 2(σ̃, ui)x,i + |σ̃|2x,i + |σi
h|2x,i)

but the last term in the right side of the inequality is bounded

by (25) and ui and σ̃ are fixed functions. This implies〈
ρ(σi

h − ui)
〉2
m

= O(ε). (27)

Let Δ0 = {a01, . . . , a0Δ} a Pn−1-unisolvent subset of points

of Ω and let η be the constant of Proposition 3. Obviously,

there exists η′ ∈ (0, η] such that

∀j = 1, . . . ,Δ, B(a0j , η
′) ⊂ Ω.

From (15), we have that there exists C > 0 such that

∀r ∈ N, r >
C

η′
, ∀j = 1, . . . ,Δ,

B

(
a0j , η

′ − C

r

)
⊂

⋃
a∈Ar∩B(t0j ,η′)

B

(
a,

C

r

)
.

If Nj = card(Ar ∩ B(a0j , η
′)), it follows ∀r ∈ N, r >

C

η′
, ∀j = 1, . . . ,Δ, ∃C1 > 0,

(
η′ − C

r

)p

≤ C1Nj

r2
and

consequently, for any r0 >
C

η′
we have

∀r ∈ N, ∀j = 1, . . . ,Δ, ∃C2 > 0, Nj ≥ C2

(
η′ − C

r0

)2r2

.

(28)

Meanwhile, from (15) and (27) we deduce that ∀j = 1, . . . ,Δ∑
a∈Ar∩B(t0j ,η′)

|(σi
h − ui)(a)|2 = o(r2), r → +∞. (29)

If arj ∈ Ar ∩B(a0j , η
′) such that

|(σi
h − ui)(a

r
j)| = min

a∈Ar∩B(t0j ,η′)
|(σi

h − ui)(a)|, r → +∞

we deduce from (28) and (29) that

∀j = 1, . . . ,Δ, |(σi
h − ui)(a)| = o(1), r → +∞. (30)

Now, we denote by Δr the set {ar1, . . . , arΔ}. By applying

Proposition 3 to Δ = Δr for r sufficiently close to infinity, it

turns out from (25), (30) and Corollary 1 that

∃C > 0, ∃γ > 0, ∀r ∈ N, r ≥ γ, ‖σi
h‖n ≤ C,
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which means that the family (σi
h) is bounded in Hn(Ω).

Therefore, there exists a subsequence (σrl
εl
)l∈N extracted from

this family, with ε = ε(rl), and an element u∗
i of Hn(Ω) such

that

u∗
i = lim

l→+∞
σrl
εl

weakly in Hn(Ω).
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de Desórdenes Temporomandibulares utilizando Análisis Factorial y
Elemento Finito. Tesis de Maestrı́a en Ciencias con Mención en
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