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Non-Polynomial Spline Method for the Solution
of Problems in Calculus of Variations

M. Zarebnia, M. Hoshyar, M. Sedaghati

Abstract—In this paper, a numerical solution based on non-
polynomial cubic spline functions is used for finding the solution of
boundary value problems which arise from the problems of calculus
of variations. This approximation reduce the problems to an explicit
system of algebraic equations. Some numerical examples are also
given to illustrate the accuracy and applicability of the presented
method.

Keywords—Calculus of variation; Non-polynomial spline
functions; Numerical method
INTRODUCTION

HE calculus of variations and its extensions are devoted to

finding the optimum function that gives the best value of

the economic model and satisfies the constraints of a
system. The need for an optimum function, rather than an
optimal point, arises in numerous problems from a wide range
of fields in engineering and physics, which include optimal
control, transport phenomena, optics, elasticity, vibrations,
statics and dynamics of solid bodies and navigation[1]. In
computer vision the calculus of variations has been applied to
such problems as estimating optical flow[2] and shape from
shading [3]. Several numerical methods for approximating the
solution of problems in the calculus of variations are known.
Galerkin method is used for solving variational problems in
[4]. The Ritz method [5], usually based on the subspaces of
kinematically admissible complete functions, is the most
commonly used approach in direct methods of solving
variational problems. Chen and Hsiao [6] introduced the
Walsh series method to variational problems. Due to the
nature of the Walsh functions, the solution obtained was
piecewise constant. Some orthogonal polynomials are applied
on variational problems to find the continuous solutions for
these problems [7-9]. A simple algorithm for solving
variational problems via Bernstein orthonormal polynomials
of degree six is proposed by Dixit et al. [10]. Razzaghi et al.
[11] applied a direct method for solving variational problems
using Legendre wavelets. He’s variational iteration method
has been employed for solving some problems in calculus of
variations in [12].

Spline functions are special functions in the space of which

approximate solutions of ordinary differential equations. In
other words spline function is a piecewise polynomial,
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satisfying certain conditions of continuity of the function and
its derivatives. The applications of spline as approximating
interpolating and curve fitting functions have been very
successful[13-16]. Quadratic and cubic polynomial and non-
polynomial spline functions based methods have been
presented to find approximate solutions to second order
boundary value problems[17]. Khan [18] used parametric
cubic spline function to develop a numerical method, which is
fourth order for a specific choice of the parameter. The main
purpose of the present paper is to use non-polynomial cubic
spline method for numerical solution of boundary value
problems which arise from problems of calculus of variations.
The method consists of reducing the problem to a set of
algebraic equations. The outline of the paper is as follows.
First, in Section 2, we introduce the problems in calculus of
variations and explain their relations with boundary value
problems. Section 3 outlines non-polynomial cubic spline and
basic equations that are necessary for the formulation of the
discrete system. Also in this section, we report our numerical
results and demonstrate the efficiency and accuracy of the
proposed numerical scheme by considering two numerical
examples.

Il. STATEMENT OF THE PROBLEM

The genaral form of a variational problem is finding
extremum of the

30U, (1), (1), o, (D)] =
[ (60,005 (0, (10, 1(0), U3 (0, .0 (D).
)

To find the extreme value of J , the boundary conditions of
the admissible curves are known in the following form:

u;(a) =y, i=12,..,n, 2
u,(b) =5, i=12,..,n 3)
The necessary condition for u,(t), i=12,...,n, toextremize
J[u, (t),u, (t),...,u, (t)]is to satisfy the Euler-Lagrange

equations that is obtained by applying the well known

procedure in the calculus of variation [5],
G 4@y o i=12..n
ou; dt ou;

subject to the boundary conditions given by Egs. (2)-(3).

(4)
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In this paper, we consider the special form of the variational
problem(1) as
b

Iu(®)] = [G(t,u(e),u®)t, 5)
with boundar;1 conditions
u@=y,  u(b)=47, (6)
and

b
J[uy (1), u, ()] = f G(t, u, (1), u, (1), us (1), Uz (D)dt (7)
subject to boundary co?ditions

ul(b) = 511
u,(b) = 3,.

(8)
)

u(a) =7,
u,(a) =7,,

Thus, for solving the variational problems (5), we consider the
second order differential equation

oG d oG

—-—(=)=0 (10)
ou dt ou

with the boundary condition (6). And also, for solving the

variational problems (7), we find the solution of the system of

second-order differential equations

oG d oG
= 2(E)=0,

i=12,
ou, dt ou/

(11)

with the boundary conditions (8)-(9). Therefore, by applying
non-polynomial cubic spline method for the Euler-Lagrange
equations (10) and (11) we can obtain an approximate solution
to the variational problems (5) and (7).

I11. Non-polynomial Cubic spline method

Consider the partition A ={t,,t,,t,,....t, }of [a,b]c R.
Let S, (A)denote the set of piecewise polynomials of degree
K on subinterval |, = [t, t,.,] of partition A. In this work, we

consider non-polynomial cubic spline method for finding
approximate solution of variational problems.

Consider the grid pointst; on the interval [a,b] as
follows:

a=t, <t <t,<..<t , <t, =b (12)
t,=t,+ih, i=012..,n, (13)
b-a
h=——, (14)
n
where N is a positive integer. LetU(t) be the exact solution of
the Eq.(10) and S,(t)be an approximation to
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U, = u(t;) obtained by the segmentP, (t). Each non-

polynomial spline segment P, (t) has the form:

P.(t) =asink(t—t,)+b,cosk(t—t,)+c (t—-t)+d,
i=012,..,n-1, (15)

where a,,b;,c;and d,are constants and K is the frequency

of the trigonometric functions which will be used to raise the
accuracy of the method and Eq. (15) reduce to cubic

polynomial spline function in [a,b]when k — 0.

We consider the following relations:

.13
B(t.;)=U,;, JzE,E’
, 13
Pi(ti+j)=Di+j’ JZE!E’ (16)
" - 1 3
R" (t.;) =My, JZE,E.

We can obtain the values of a.,b

straightforward calculation as follows:

c;iand d,via a

M ,cosf0-M , M
h2 i+5 i+5 b h2 i+§ (17)
a.- = - , ), — — ,
' 6*sin@ ' 2
Di,+D (M ,cos@—-M )1+ cos8)
c. — HE _h HE HE
' 2 20sin 0
M | sin o
_h i+5 2
20
(18)
M.
i+
d=u , +h*—=%, (19)

i+=
2
where @ =khand i=0,1,...,n—1. Using the continuity

conditions Pi(fnl)(xi;):Pi(n)(Xig)* n=01, we get the
2 2

following relations for i =0,1,...,n—1:

h h(cosg +1)
-(O;+D ;)=u ;-u ; +M 1(_2_—.2)"‘
2 i_E i+5 i_E i+5 k 2ksin@
o . .0
hcos@cos— +hcos@ + hsin@dsin—
M 2 2 1 )
i2 2ksin@ k2™
(20)
and
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%(Di + Di,i -Di,

2 2

sing coso(1+ cosg)
2 _ 2

cos&_ N 1
i, ksing 2k 2ksing ktang
o o
_1+c052) , 080 simgicose(lJrcosE)
2ksing i-l ktand k 2ksin®
.0 0
sin— 1 1+cos—
2 2
+—5)+M ( —=).
2k ksmH 2ksing

(1)

By reducing the indices of Egs. (20) and (21) by one, we get
the following equations:

Ui-Us 1 cosg+1
ID.+D ,)=—2—24M ,(—-——<5—
2 (D i—g) h i~ hk? 2ksin9)
cos€+cosé?
o2
i 2ksing  hk*”
(22)
and also
1
E(D'_1+Di-3_D'_Di-l):
2 2
. 0 o 0
sin— cos&(1+cos— 1+cos—
(0 _" 2 X 2)I 1 2)
i-1 ksind 2k 2ksing ktang 2ksing
0. .6
_cosd sing cos@(l+oos§) smE
+M ,( I . I )+
i~ ktang  k 2ksin@ 2k
1+COSQ
_1 2
X 1(k.—+ . )
i ksin@  2ksing
(23)
3

D, j= ;,_1,0%are eliminated from Eq. (23) by using

Eq. (22). As a result we get the following scheme:

u,-2u ,+u ;=
HE |—E |—E
hz[aM_ s +2M [ +aM ], i=23..,n-1
|—E |—E i 5
(24)
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where
1 1 1 cosd
fsind 6°’ 0°> Osing
In order to illustrate the performance of the non-polynomial
cubic spline method, we present two examples.

(25)

Example 1. We first consider the following variational
problem with the exact solution u(t) = e in [12]:

minJ = j(u(t)+u’(t)—4e3t)dt, (26)

subject to boundary conditions

u(0) =1, u(l) =e°. 27)

Considering the Eq. (26), the Euler-Lagrange equation of this
problem can be written in the following form:

u”(t)—u(t) —8e* =0. (28)

The solution of the second-order differential equation (28)
with boundary conditions (27) is approximated by the
presented spline method. For our purpose, We consider the
boundary value problem (28) in general form as follows:

u"(t) = g(®u(t) + f (1), (29)

Where g(t) =1and f(t) =8e® . The exact solution of this
problem is u(t) =e*
boundary-value problem (29), the interval [0,1] is divided
h. Setting

. For a numerical solution of the

into a set of grid points with step size

. -3 -11 .
t=t.., j=—,—,=, inEq. (29), we obtain
i 2 2

N[

I+J g(t|+1)u|+1 + f(t|+j) (30)

by using the assumption P"(t;,;) = M, in (30) we have

. -3 -11
Mi,; =9, )u,; + Ft.;), ] Sy (31)

Replacing M;, ; as Eq. (31) in Eq.(24), we get

120+, = (gt )u_j+f(t_j))

2 2 2 2
+24(9t )u , + f(ti_1)>+oe(g(tié)uw1 +HE ),
2 2 2 2 2 2
i=23...,n-1 (32)

or
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(eh®g(t 5)-Du 5 +2(ph%g(t ) +lu , +

(@h?g(t ,)-Du , =-h>(af (t ,)+2pF(t )+

1
+=
2

af (t ,)), i=23,..,n-1. (33)
HE
Using Taylor’s series for Eq. (33), we can obtain local
truncation error as follows:
2 " 3 1 (3)
t. =h"2a+24-1)u’+h (—05—ﬂ+5)ui +
5 5 1 1 13 1
h'(-=+=a+=pu? +h*(=-—a—-—p)u?
o g @t g G g 5 P
41 1 91
+h¥(—a+— B ———Uu® +0(h’
(192 192ﬁ 5760) ' (h)
i=23,..,n-1 (34)

The linear system (33) consists of (N —2)equation with
Nunknowns y  j=1,..,n. To obtain unique solution, we

il
2

need two equations. For this purpose, we can use the

following equations that are found by using method of

undetermined

coefficient
2u, —3U, +U,; =
2 2
1 5 7 1 .
h?(-—M,+=M, +—M, -—M,), i=1,
(1ZO°8§48§80 3)
(39)
u ,-3u , +2u, =
n—E n—E
hz(_—1Mn+5M 1+lM 3—i|v| ), i=n.
120 8 “‘E 48 H_E 80 ”‘E
(36)
The local truncation errors ti, i=12,..,Nn associate with

the scheme (33), (35) and (36) can be obtained as follows:

%heué“w(h’), i=1,
t, = 2}Wh‘iui(‘”JrO(W), i=2,3,...,n-1,
with , 1 ,_5

a= Py

The errors are reported on the set of uniform grid points
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S={a=t,..t,..t =b}

n

t =t, +ih, i=012,..n, h=""2
n
@37)
The maximum error on the uniform grid points S is
|E. (h)], = max |u(tj)—un(tj) : 38)

0<j<n
where u(tj ) is the exact solution of the given example, and
ujis the computed solution by the non-polynomial cubic

spline method. The maximum absolute errors in numerical
solution of the Example 1 are tabulated in Table I. These
results show the efficiency and applicability of the presented
method.

TaBLE |
RESULTS FOR EXAMPLE 1

n h \ E,(h)[_

4 0.2500000 3.52887x10°°

8 0.1250000 3.96710x10™*
16 0.0625000 2.85156x10°
32 0.0312500 1.85427x10°°
64 0.0156250 1.17167x10”"
128 0.0078125 7.34391x10°°

Example 2. In this example, consider the following problem
of finding the extremals of the functional[11]:

Iy, (1), u, (O] =

3 (39)
[ W2 )+ © +2u, (Hu, @),
0
with boundary conditions
T
u,(0) =0, U (E) =1 (40)
T
u,(0)=0 UZ(E) =-1 (41)
which has the exact solution given by

(u, (t),u, (t)) = (sin(t),—sin(t)). For this problem, the
corresponding Euler-Lagrange equations are
{u{’(t) ~U,(t) =0,

) (42)
u2 (t) - ul (t) = Oa
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with boundary conditions (40) and (41). In a similar manner
and applying (24), we assume that functions u,(t) and

U, (t) defined over the interval [0, %] are approximated by
Pl,i =

a,; sink(t—t;)+b,; cosk(t—t;)+c,; (t—t;)+d,;,
i=01..,n-1 (43)

Py =
a,; sink(t—t;)+b,; cosk(t—t;)+c,; (t-t;)+d,;,

i=01..n-1 (44)
Where a;;, b;;, ¢;; and d;;, j=12 are constants
and K is the frequency of the trigonometric functions.

Similarly, we can obtain the following results:

T 2ul,i—1 e
2 2
h’[aM . +2B8M | +aM ], i=23,..,n-1
l'I_E 1, _E 1,|+E
u2,i+% Bl 2u2,i—% * u2,i—% -
hz[al\/lz_ 3+2ﬂM2_ L +a|\/|2_ ] 1=2,3,...,n-1,
v'*E ,IfE 'HE

(45)
where o and [ are defined in (25). Now, consider the
system (42) and substitute t =t;, thus we can write:

U = Uy, Uy = Uy, (46)
consequently, we have:
My =U,;, M, =u,;. (47)
By using relations (45) -(47), we get:
u ,—-2u ,+uUu ,=
l,i+% l,i—% l,i—g
2
h [auz,ii +2ﬂu2 L tau +£]' 1=2,3..,n-1
2 2
u ,-2u ,+U ,=
2,i+% 2,i—1 2,i—%
h*[au ,+2pu ,+au ], i=23,..,n-1
Li-= 1i-= 1,i4rE
(48)

The system (48) contains 2(N—2) equations with 2n
unknown coefficients u | j=12, i=1..,n. To
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obtain unique solution, four more equations are needed. These
equations are found by using method of undetermined
coefficients and are given below:

h? )
PAVI —3ul% + ul’% = 5(15%% +3u2%), i=1,
h? )
ulvn_i —3u1 L +H2Uu = E(SUZ’H_g +15u2,n_%), i=n,
(49)
and

h? .
2u, , — 3u2‘l tU 5= §(15u¢ + 3”1,§)’ =1
2 2 2 2
h2
u, s —3u2’n7l +2u, :ﬂ(g’ul,nﬁ +15ul’n£), i=n.
2 2 2 2
(50)
The Egs. (48)-(50) produce a linear system that contains
2nequations with2n unknown coefficients. Solving
this linear system, we can obtain the approximate solution of
the system of second-order boundary value problems(42).

Eul(h)Hmand ‘Euz (h)”w be the maximum

absolute errors. We solved Example 2 for different values of
N. The maximum of absolute errors on the uniform grid

points (37) are tabulated in Table |1 .

Suppose ‘

TasLE |
RESULTS FOR EXAMPLE 2
n
h E, (h)”w ‘ E,. (h)Hw
4 0.392699 1.50959x10° | 1.50959x10°
8 | 0.196350 | 156763%10° | 156763<10°
16 0.098175 1.06058107 1.06058107
32 0.049087 6.75003¢10” 6.75003%10”
64 | 0.024544 | 42351%10% | 4.2351%10%
128 | 0.012272 26501%10™ 26501%10™
IV. CONCLUSION
In this paper non-polynomial cubic spline method

employed for finding the extremum of a functional over the
specified domain. The main purpose is to find the solution of
boundary value problems which arise from the variational
problems. The non-polynomial cubic spline method reduce the
computation of boundary value problems to some algebraic
equations. The proposed scheme is simple and
computationally attractive. Applications aredemonstrated
through illustrative examples
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