
 

 

  
Abstract—Two new algorithms for nonparametric estimation of 

errors-in-variables models are proposed. The first algorithm is based 
on penalized regression spline. The spline is represented as a 
piecewise-linear function and for each linear portion orthogonal 
regression is estimated. This algorithm is iterative. The second 
algorithm involves locally weighted regression estimation. When the 
independent variable is measured with error such estimation is a 
complex nonlinear optimization problem. The simulation results have 
shown the advantage of the second algorithm under the assumption 
that true smoothing parameters values are known. Nevertheless the 
use of some indexes of fit to smoothing parameters selection gives 
the similar results and has an oversmoothing effect. 
 

Keywords—Grade point average, orthogonal regression, 
penalized regression spline, locally weighted regression. 

I. INTRODUCTION 
HE selection in higher education is based on the 
assumption that the criterion for students’ selecting 

(unified state exam score) correlates with their performance 
(first-year university grade point average – FYGPA). The 
relationship between these parameters is usually assumed to 
be linear and significant [1]. Only a few work [2], [3] has been 
devoted to examining of nonlinearity of this relationship. This 
results appear inconclusively because it is ignored the input 
factor measurement error. 

Currently methods of nonparametric estimation error-in-
variables models have been actively developing [4]. This 
development is aimed at integration with known methods of 
solving the problem of recovering the structural dependency. 
Now there are approaches which require extensive additional 
information (instrumental variables, repeated observations [5]) 
that leads to the costs of gathering such data. This paper is 
focused on the total least squares method [6]. It requires only 
fix the value of the ratio of errors variances, which can be set 
on the basis of a priori notions of the researcher. 

II. PROBLEM DEFINITION 
The subject of interest is the shape of the relationship 

between university grade point average Y  and unified state 
exam score X . Let the unknown functional dependence 

( )Y g X=  be postulated. The observed values x  and y  of the 
variables are recorded with random errors xε  and yε  with 
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zero expectation: 
 
 xx X ε= + , yy Y ε= + . (1) 
 
The result is a structural equation of the form 
 
 ( )x yy g x ε ε= − + . (2) 
 
The problem is to estimate the response values well 

consistent with the true values Y . It is well known that the use 
of the ordinary least squares for identification of the structural 
equation (2) results in biased and inconsistent estimates [7]. 
Therefore, to estimate so called errors-in-variables model a 
number of special approaches are used [8], [9]. 

III. ESTIMATION METHODS 
For estimating errors-in-variables model a priori 

information about the random errors distribution is required. It 
is assumed that the ratio of the error variances is a given value 

 

 2 2
x yε εγ σ σ= . (3) 

 
Then the estimation problem can be solved by the total least 
squares method by optimizing the loss function 
 

 ( ) ( )2 2

1

1 ( )
n

i i i i i i
i

G w x X w y g X
γ=

= − + −∑  (4) 

 
where index i  corresponds to the number of observation, n  is 
sample size, iw  is a weight of i th observation point. 

The best studied is the case of a linear dependence between 
two variables, for which there exists an analytical solution 
[10]. With 1γ =  such a regression is called orthogonal. 

The estimation of nonlinear errors-in-variables models is 
extremely difficult. There are a number of approaches which 
combine advantages of orthogonal and nonparametric 
regression. The author suggests her own estimation algorithms 
within these approaches. 

A. Orthogonal Penalized Regression Spline 
One of the widely used nonparametric methods is penalized 

regression spline (P-spline). In the simple case of a first-order 
spline the model specifies that for some coefficients vector 

( )0 1 1, , , Kθ θ θ θ += …  
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 ( )Y P X θ=  (5) 
 
where ( )P X  is the spline basis, K  is the number of knots. In 
particular, in [4] a basis is proposed of the form 
 

 ( ) ( ) ( )( )11, , , , KP X X X k X k
+ +

= − −…  (6) 

 
where 1 Kk k< <…  are the knots in region of X , z+  is the 
positive part of z . The knots are typically determined using 
sample quantiles of input variable, in particular in [4] lk  is 
defined as ( ) ( )1 2l K+ + -th sample quantile of x . 

An estimate of the vector θ  can be obtained by the least 
squares method: 

 

 ( ) ( )( ) ( )1ˆ ' 'P X P X D P X yθ λ
−

= +  (7) 
 

where λ  is the smoothing parameter, D  is the diagonal 
matrix with the first two zeroes and K  ones on the diagonal 
called the penalty matrix. 

For the P-spline estimation of errors-in-variables model 
Iterative Conditional Modes algorithm was proposed in [8]. 
The initial values for the vector θ  is estimated by naive P-
sline assuming X x= . For fixed values of X  the 
optimization problem with loss function (4) is solved by 
ordinary least squares. So it turns out the next approximation 
of estimates vector θ̂ . Further, for fixed values of the 
parameters the true values of input variable are estimated by 
minimizing the function (4). This steps iterate to convergence 
in estimates vector θ̂ . Within the overall algorithm the weight 

iw  equals to one for all i . 
The most difficult part of the algorithm is the estimation at 

each step of the true values of the input variable. In order to 
simplify this part, the author suggested in [11] the following 
procedure. First, the spline is represented as a piecewise-linear 
function whose parameters { } 0,,l l l Kα β

=
 are calculated from the 

recurrence relations 
 
 1 1l l l lkα α θ− += − , 1 1l l lβ β θ− += +  (8) 
 

for 0 0α θ= , 0 1β θ= . Then, there are calculated the elements 
of the matrices of weighted distances from the observed values 
of the variables to each knot Rk  and to each linear portion 
Rl  of the regression curve: 
 

 ( )
2

, , ,
1

, ,

i l l i
i i l

il l

y x
if x y U

Rl

M otherwise

α β

γβ

⎧ − −
∈⎪

= ⎨ +
⎪
⎩

 (9) 

 

 ( ) ( )2 21
ij i j i j j jRk x k y kα β

γ
= − + − − , (10) 

 

1,i n= , 0,l K= , 1,j K= , M  is the maximally large 
number, lU  is the set of pairs of the observed values of 
variables that satisfy the inequality 
 

 ( )1( ) ( )l l l i l lk sign y kν β ν +< ⋅ < , (11) 
 

where ( )1( ) ( )l j l l l j i j
l

v k sign k x kβ α β
γβ

⎛ ⎞
= ⋅ + − −⎜ ⎟

⎝ ⎠
, 0k M= − , 

1Kk M+ = . 
On the basis of the composite matrix of distances 

[ ] { }| isR Rl Rk R= =  of dimensions (2 1)N K× + , the number *
il  

is determined of the linear portion of the curve with the 
minimal distance to the i th observation 

 
 *

0,2
mini is

s K
l Arg R

=
= , 0, 2s K= . (12) 

 
Finally, the estimates of the true values of input variable are 
found according to the following rule: 
 

 

* *

*

*

*
2

*

( )
, ,

1ˆ

, .

i i

i

i

i il l
i

i l

il K

x y
l K

X

k l K

γβ α

γβ

−

+ −⎧
⎪ ≤
⎪⎪ += ⎨
⎪
⎪ >
⎪⎩

 (13) 

 
This algorithm is investigated and applied to the problem 

Engel curve estimation in [11]. 

B. Orthogonal Locally Weighted Regression 
A somewhat different approach to nonparametric estimation 

uses locally weighted regression (LOESS). LOESS was 
proposed in [12]. Its main idea is to construct response 
estimates at given points jX  of the input variable on the k 

nearest neighbors. Based on the distance jh  from the j th 

point to the k th nearest point the weights are calculated 
 

 ( ) ( )1
j ii j j X Xw X W h ρ−=  (14) 

 
where 

j iX Xρ  is Euclidean distance from jX  to i th value of 

input variable, 1,j m= , 1,i n= . As a weight function ( )W z  
is traditionally used the tricube function 
 

 ( ) ( )331W z z
+

= − . (15) 

 
However, any other weight function that satisfies the certain 
properties could be used, e.g. the rectangular weight function 
 

 ( ) ( )1W z H z= −  (16) 
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where ( )H ⋅  is the Heaviside function. 
Thus, the calculated weights ( ){ }

1,i j i n
w X

=
 are used to 

regression estimate by weighted least squares method. The 
regression is estimated for each jX . 

For errors-in-variables model estimation it seems logical 
that least squares problem is replaced by minimizing (4) with 
weight ( )i jw X . In the simplest case local linear approximation 

with 1γ =  only it is necessary to estimate the weighted 

orthogonal regression for each jX . 

But the problem lies in the fact that the weights depend on 
the true values of input variable. To solve this problem the 
adaptive estimation approach is proposed in [9]. In contrast to 
this approach, a complex nonlinear optimization problem is 
considered with the objective function 

 

 ( )2

2
1

1 ( , )
1

n

j i j ij i j j i
ij

G w X X y xα β
γβ =

= − −
+

∑  (17) 

 
where the i th weight depends on the true values of input 
variable which is determined by the ratio 
 

 ( )
21

i j i j
ij

j

x y
X

γβ α

γβ

+ −
=

+
. (18) 

 
Optimization of loss function (17) was carried out using a 

combination of golden section search and successive parabolic 
interpolation. The proposed algorithms for errors-in-variables 
model estimation were implemented using a free software 
environment for statistical computing R [13]. 

IV. SMOOTHING PARAMETER SELECTION 
An important problem of using of nonparametric estimation 

methods is the smoothing parameter selection. Standard 
selection criteria are cross-validation and information criterion 
[14]. Its calculation is convenient for the linear models when 
predictions ŷ  are defined through the hat matrix H  as 
follows ŷ Hy= . 

Unfortunately that is impossible to do for errors-in-
variables models. The usual indices of fit can be used, for 
example RMSE , MAE , MAPE . Unlike ordinary regression 
models when the input variable is measured with error the use 
of these indexes should not lead to the problem of overfitting. 
This is due to the instability of orthogonal regression estimates 
for small samples. So if the correlation between the input and 
the response variables is close to zero, the usual regression 
line is almost horizontal, whereas the orthogonal regression 
coefficient will tend to infinity. Therefore orthogonal 
regression line can greatly deviate from the observation points. 
The usual indexes of fit should prevent strong deviation. 

Also in [8] it is suggested to fit the smoothing parameter 
using cross-validation. Its value is calculated for initial 
parameters estimate and is held fixed for the iterative 

procedure. In particular, leave-one-out cross-validation 
LOOCV  can be used. 

V. DATA SIMULATION 
Assume that the true dependence of the normalized FYGPA 

Y  on the normalized exam scores X  can be described by a 
model curve 

 
 Y X γ=  (19) 
 

where ( )~ ,X B α β , α  and β  are standard beta distribution 
parameters, γ  indicates differences in a discriminating power 
of the scores. If 1γ >  then FYGPA has the greater 
discriminating power compared to unified state exam scores 
for the strong students (for large values of X ) and the lesser 
one for the weak (for small values of X ), and vice versa. 

The true values of both variables are unobservable. The 
results of observations are random variables (1). Unfortunately 
the standard assumption of normal error distribution is 
unacceptable here in so far as observed values must be in the 
interval [0, 1]. Therefore beta distribution was chosen wherein 
the parameters have to be dependent on the scores: 

 

 1
2

b
x xε ε= − , 1

2
b

y yε ε= −  (20) 

 

where ( )~ ,b
x X XBε α β , ( )0 1X X X E Xα β τ τ= = + − , and 

similarly for Y . Parameters 0τ , 1τ  determine the variance of 
the errors. The parameter values are chosen so that the 
simulated data are best fit to real: 0.456γ = , 2.954α = , 

3.48β = , 0 3τ = , 1 50τ = . Fig. 1 shows that the model and 
the real scatter plot are very similar. Further 500 samples were 
generated; volume of each sample was 500 items. 
 

 
Fig. 1 Real and model scatter plot 
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As a source of real data the university database was taken. 
Sample of first-year students of the Faculty of Business was 
extracted. Rating system in this faculty enables to better 
differentiate the exam scores of weak students than strong 
compared to unified state exam scores. 

VI. SIMULATION RESULTS 

A. Comparison of Weight Functions 
First, the algorithm of orthogonal LOESS was studied. It is 

found that the objective function is not unimodal but it has as 
a rule one minimum. A behavior of loss function with 
different weight functions was compared. Fig. 2 illustrates loss 
functions graphs for example of a model sample. In both cases 
the number of neighbors is equal 200. The values of the 
objective function (17) are calculated at the point 

0 ( ) / ( )X E X α α β= = + . The findings indicate that loss 
function with rectangular weights is less stable than tricube 
weights function. This is explained by the fact that the 
rectangular weights do not change as smoothly. In terms of 
optimizing this is a disadvantage. 

Second, predictive power of orthogonal LOESS was studied 
with different weight functions. It is evaluated based on root-
mean-square differences trueRMSE  between predicted 
response values and the simulated values. The number of 
nearest neighbors (span) was varied from 200 to 450. Fig. 3 
illustrates obtained results in the form of boxplots. The 
estimation results based on rectangular weight function 
considerably yield to results based on tricube weight function. 
They range widely, and medians of trueRMSE  show worse 
predictive power. Therefore by results of modeling the use of 
tricube weight function can be recommended. Further, this 
function is used for estimating orthogonal LOESS. 

 

 
Fig. 2 Comparison of loss functions 

 

 
Fig. 3 Comparison of prediction errors 

B. Comparison of Estimation Methods 
The simulated data are used for testing of proposed 

algorithms. The number of knots was set equal to 51. The 
values of jX  for orthogonal LOESS algorithm were set in a 

range from 0 to 1 on uniform grid by step 0.02. The number of 
nearest neighbors was varied from 40 to 450 by step 5. The 
smoothing parameter takes integer values from 1 to 65. Table I 
presents average optimal values of true root-mean-square error 

*
trueRMSE , the smoothing parameter *λ , and the number of 

nearest neighbors *k  selected by the considered criteria. As an 
estimate of the average a median is taken. The values of 
interquartile range are given in parentheses (Table I). 

 
TABLE I 

RESULTS OF THE MODEL CURVE ESTIMATION 
Criterion Orthogonal P-spline Orthogonal LOESS 

 *
trueRMSE  *λ  *

trueRMSE  *k  

trueRMSE  0.0429 (0.0087) 4 (4) 0.0354 (0.0061) 350 (191) 
LOOCV  0.0584 (0.0140) 19 (58) 0.0553 (0.0158) 115 (80) 
RMSE  0.0540 (0.0093) 24 (18) 0.0454 (0.0101) 450 (105) 
MAE  0.0521 (0.0092) 17 (10) 0.0454 (0.0102) 447 (110) 

MAPE  0.0553 (0.0098) 27 (24) 0.0456 (0.0101) 445 (115) 

 
It is clear that use of the criterion of minimum of trueRMSE  

provides true values of the smoothing parameters. In a really 
deviations from the true model are unknown. So the difference 
between the optimal values of the smoothing parameters 
obtained by criterion of minimum of trueRMSE  and other 
criteria indicates a quality of the fit. 

Table I shows that orthogonal LOESS algorithm 
demonstrates the best results in terms of trueRMSE . 
Nevertheless using the smoothing parameter selection criteria 
cannot get its true value. The indexes of fit give the similar 
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results and have an oversmoothing effect. It is interesting that 
the use of cross-validation criterion leads to contrary results. 
In the case of penalized spline the effect oversmoothing 
occurs. By the usage of orthogonal LOESS algorithm inverse 
situation is observed. 

VII. CONCLUSION 
New algorithms for nonparametric estimation of errors-in-

variables models are proposed. Influence of the weight 
function parameters on the prediction accuracy of orthogonal 
LOESS algorithm was investigated. Despite the fact that the 
rectangular weight function has a number of advantages (e.g. 
ease of calculation leave-one-out cross-validation) the usage 
of tricube weights leads to a smoother loss function. In 
addition, the use of tricube weights provides on the average 
smaller prediction error. 

Furthermore the smoothing parameter selection criteria 
were investigated. Earlier [8] it was suggested to fit the 
smoothing parameter using cross-validation for initial step of 
the algorithm. This research has shown that it is really bad 
criterion in terms of the prediction accuracy. The use of usual 
fit indices gives better results. In general orthogonal LOESS 
algorithm is more perspective for confluence analysis. 
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