Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29

Search results for: trigonometric B-spline

29 Cubic Trigonometric B-Spline Applied to Linear Two-Point Boundary Value Problems of Order Two

Authors: Nur Nadiah Abd Hamid , Ahmad Abd. Majid, Ahmad Izani Md. Ismail

Abstract:

Linear two-point boundary value problems of order two are solved using cubic trigonometric B-spline interpolation method (CTBIM). Cubic trigonometric B-spline is a piecewise function consisting of trigonometric equations. This method is tested on some problems and the results are compared with cubic B-spline interpolation method (CBIM) from the literature. CTBIM is found to approximate the solution slightly more accurately than CBIM if the problems are trigonometric.

Keywords: trigonometric B-spline, two-point boundary valueproblem, spline interpolation, cubic spline

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
28 Monotone Rational Trigonometric Interpolation

Authors: Uzma Bashir, Jamaludin Md. Ali

Abstract:

This study is concerned with the visualization of monotone data using a piecewise C1 rational trigonometric interpolating scheme. Four positive shape parameters are incorporated in the structure of rational trigonometric spline. Conditions on two of these parameters are derived to attain the monotonicity of monotone data and othertwo are leftfree. Figures are used widely to exhibit that the proposed scheme produces graphically smooth monotone curves.

Keywords: Trigonometric splines, Monotone data, Shape preserving, C1 monotone interpolant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
27 Circular Approximation by Trigonometric Bézier Curves

Authors: Maria Hussin, Malik Zawwar Hussain, Mubashrah Saddiqa

Abstract:

We present a trigonometric scheme to approximate a circular arc with its two end points and two end tangents/unit tangents. A rational cubic trigonometric Bézier curve is constructed whose end control points are defined by the end points of the circular arc. Weight functions and the remaining control points of the cubic trigonometric Bézier curve are estimated by variational approach to reproduce a circular arc. The radius error is calculated and found less than the existing techniques.

Keywords: Control points, rational trigonometric Bézier curves, radius error, shape measure, weight functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4282
26 Adaptive Motion Planning for 6-DOF Robots Based on Trigonometric Functions

Authors: Jincan Li, Mingyu Gao, Zhiwei He, Yuxiang Yang, Zhongfei Yu, Yuanyuan Liu

Abstract:

Building an appropriate motion model is crucial for trajectory planning of robots and determines the operational quality directly. An adaptive acceleration and deceleration motion planning based on trigonometric functions for the end-effector of 6-DOF robots in Cartesian coordinate system is proposed in this paper. This method not only achieves the smooth translation motion and rotation motion by constructing a continuous jerk model, but also automatically adjusts the parameters of trigonometric functions according to the variable inputs and the kinematic constraints. The results of computer simulation show that this method is correct and effective to achieve the adaptive motion planning for linear trajectories.

Keywords: 6-DOF robots, motion planning, trigonometric function, kinematic constraints

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 582
25 Cubic Trigonometric B-spline Approach to Numerical Solution of Wave Equation

Authors: Shazalina Mat Zin, Ahmad Abd. Majid, Ahmad Izani Md. Ismail, Muhammad Abbas

Abstract:

The generalized wave equation models various problems in sciences and engineering. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline for the approximate solution of wave equation is developed. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Von Neumann stability analysis is used to analyze the proposed method. Two problems are discussed to exhibit the feasibility and capability of the method. The absolute errors and maximum error are computed to assess the performance of the proposed method. The results were found to be in good agreement with known solutions and with existing schemes in literature.

Keywords: Collocation method, Cubic trigonometric B-spline, Finite difference, Wave equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422
24 L1-Convergence of Modified Trigonometric Sums

Authors: Sandeep Kaur Chouhan, Jatinderdeep Kaur, S. S. Bhatia

Abstract:

The existence of sine and cosine series as a Fourier series, their L1-convergence seems to be one of the difficult question in theory of convergence of trigonometric series in L1-metric norm. In the literature so far available, various authors have studied the L1-convergence of cosine and sine trigonometric series with special coefficients. In this paper, we present a modified cosine and sine sums and criterion for L1-convergence of these modified sums is obtained. Also, a necessary and sufficient condition for the L1-convergence of the cosine and sine series is deduced as corollaries.

Keywords: Conjugate Dirichlet kernel, Dirichlet kernel, L1-convergence, modified sums.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032
23 A Thought on Exotic Statistical Distributions

Authors: R K Sinha

Abstract:

The statistical distributions are modeled in explaining nature of various types of data sets. Although these distributions are mostly uni-modal, it is quite common to see multiple modes in the observed distribution of the underlying variables, which make the precise modeling unrealistic. The observed data do not exhibit smoothness not necessarily due to randomness, but could also be due to non-randomness resulting in zigzag curves, oscillations, humps etc. The present paper argues that trigonometric functions, which have not been used in probability functions of distributions so far, have the potential to take care of this, if incorporated in the distribution appropriately. A simple distribution (named as, Sinoform Distribution), involving trigonometric functions, is illustrated in the paper with a data set. The importance of trigonometric functions is demonstrated in the paper, which have the characteristics to make statistical distributions exotic. It is possible to have multiple modes, oscillations and zigzag curves in the density, which could be suitable to explain the underlying nature of select data set.

Keywords: Exotic Statistical Distributions, Kurtosis, Mixture Distributions, Multi-modal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
22 Flexure of Cantilever Thick Beams Using Trigonometric Shear Deformation Theory

Authors: Yuwaraj M. Ghugal, Ajay G. Dahake

Abstract:

A trigonometric shear deformation theory for flexure of thick beams, taking into account transverse shear deformation effects, is developed. The number of variables in the present theory is same as that in the first order shear deformation theory. The sinusoidal function is used in displacement field in terms of thickness coordinate to represent the shear deformation effects. The noteworthy feature of this theory is that the transverse shear stresses can be obtained directly from the use of constitutive relations with excellent accuracy, satisfying the shear stress free conditions on the top and bottom surfaces of the beam. Hence, the theory obviates the need of shear correction factor. Governing differential equations and boundary conditions are obtained by using the principle of virtual work. The thick cantilever isotropic beams are considered for the numerical studies to demonstrate the efficiency of the. Results obtained are discussed critically with those of other theories.

Keywords: Trigonometric shear deformation, thick beam, flexure, principle of virtual work, equilibrium equations, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2932
21 A Comparison of Some Splines-Based Methods for the One-dimensional Heat Equation

Authors: Joan Goh, Ahmad Abd. Majid, Ahmad Izani Md. Ismail

Abstract:

In this paper, collocation based cubic B-spline and extended cubic uniform B-spline method are considered for solving one-dimensional heat equation with a nonlocal initial condition. Finite difference and θ-weighted scheme is used for time and space discretization respectively. The stability of the method is analyzed by the Von Neumann method. Accuracy of the methods is illustrated with an example. The numerical results are obtained and compared with the analytical solutions.

Keywords: Heat equation, Collocation based, Cubic Bspline, Extended cubic uniform B-spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
20 Cubic B-spline Collocation Method for Numerical Solution of the Benjamin-Bona-Mahony-Burgers Equation

Authors: M. Zarebnia, R. Parvaz

Abstract:

In this paper, numerical solutions of the nonlinear Benjamin-Bona-Mahony-Burgers (BBMB) equation are obtained by a method based on collocation of cubic B-splines. Applying the Von-Neumann stability analysis, the proposed method is shown to be unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The L∞ and L2 in the solutions show the efficiency of the method computationally.

Keywords: Benjamin-Bona-Mahony-Burgers equation, Cubic Bspline, Collocation method, Finite difference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3456
19 Flexure of Simply Supported Thick Beams Using Refined Shear Deformation Theory

Authors: Yuwaraj M. Ghugal, Ajay G. Dahake

Abstract:

A trigonometric shear deformation theory for flexure of thick beams, taking into account transverse shear deformation effects, is developed. The number of variables in the present theory is same as that in the first order shear deformation theory. The sinusoidal function is used in displacement field in terms of thickness coordinate to represent the shear deformation effects. The noteworthy feature of this theory is that the transverse shear stresses can be obtained directly from the use of constitutive relations with excellent accuracy, satisfying the shear stress free conditions on the top and bottom surfaces of the beam. Hence, the theory obviates the need of shear correction factor. Governing differential equations and boundary conditions are obtained by using the principle of virtual work. The thick simply supported isotropic beams are considered for the numerical studies to demonstrate the efficiency of the results obtained is discussed critically with those of other theories.

Keywords: Trigonometric shear deformation, thick beam, flexure, principle of virtual work, equilibrium equations, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
18 Application of Generalized NAUT B-Spline Curveon Circular Domain to Generate Circle Involute

Authors: Ashok Ganguly, Pranjali Arondekar

Abstract:

In the present paper, we use generalized B-Spline curve in trigonometric form on circular domain, to capture the transcendental nature of circle involute curve and uncertainty characteristic of design. The required involute curve get generated within the given tolerance limit and is useful in gear design.

Keywords: Bézier, Circle Involute, NAUT B-Spline, Spur Gear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
17 Applications of Trigonometic Measures of Fuzzy Entropy to Geometry

Authors: Om Parkash, C.P.Gandhi

Abstract:

In the literature of fuzzy measures, there exist many well known parametric and non-parametric measures, each with its own merits and limitations. But our main emphasis is on applications of these measures to a variety of disciplines. To extend the scope of applications of these fuzzy measures to geometry, we need some special fuzzy measures. In this communication, we have introduced two new fuzzy measures involving trigonometric functions and simultaneously provided their applications to obtain the basic results already existing in the literature of geometry.

Keywords: Entropy, Uncertainty, Fuzzy Entropy, Concavity, Symmetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
16 Analytical Modeling of Globular Protein-Ferritin in α-Helical Conformation: A White Noise Functional Approach

Authors: Vernie C. Convicto, Henry P. Aringa, Wilson I. Barredo

Abstract:

This study presents a conformational model of the helical structures of globular protein particularly ferritin in the framework of white noise path integral formulation by using Associated Legendre functions, Bessel and convolution of Bessel and trigonometric functions as modulating functions. The model incorporates chirality features of proteins and their helix-turn-helix sequence structural motif.

Keywords: Globular protein, modulating function, white noise, winding probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
15 Coefficients of Some Double Trigonometric Cosine and Sine Series

Authors: Jatinderdeep Kaur

Abstract:

In this paper, the results of Kano from one dimensional cosine and sine series are extended to two dimensional cosine and sine series. To extend these results, some classes of coefficient sequences such as class of semi convexity and class R are extended from one dimension to two dimensions. Further, the function f(x, y) is two dimensional Fourier Cosine and Sine series or equivalently it represents an integrable function or not, has been studied. Moreover, some results are obtained which are generalization of Moricz’s results.

Keywords: Conjugate Dirichlet kernel, conjugate Fejer kernel, Fourier series, Semi-convexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
14 Efficient Alias-free Level Crossing Sampling

Authors: Negar Riazifar, Nigel G. Stocks

Abstract:

This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide alias-free high-fidelity signal reconstruction for speech signals without exponentially increasing sample number with increasing bit-depth. We introduce methods in LC sampling that reduce the sampling rate close to the Nyquist frequency even for large bit-depth. The results indicate that larger variation in the sampling intervals leads to alias-free sampling scheme; this is achieved by either reducing the bit-depth or adding a jitter to the system for high bit-depths. In conjunction with windowing, the signal is reconstructed from the LC samples using an efficient Toeplitz reconstruction algorithm.

Keywords: Alias-free, level crossing sampling, spectrum, trigonometric polynomial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38
13 Traveling Wave Solutions for Shallow Water Wave Equation by (G'/G)-Expansion Method

Authors: Anjali Verma, Ram Jiwari, Jitender Kumar

Abstract:

This paper presents a new function expansion method for finding traveling wave solution of a non-linear equation and calls it the (G'/G)-expansion method. The shallow water wave equation is reduced to a non linear ordinary differential equation by using a simple transformation. As a result the traveling wave solutions of shallow water wave equation are expressed in three forms: hyperbolic solutions, trigonometric solutions and rational solutions.

Keywords: Shallow water wave equation, Exact solutions, (G'/G) expansion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
12 On Symmetry Analysis and Exact Wave Solutions of New Modified Novikov Equation

Authors: Anupma Bansal, R. K. Gupta

Abstract:

In this paper, we study a new modified Novikov equation for its classical and nonclassical symmetries and use the symmetries to reduce it to a nonlinear ordinary differential equation (ODE). With the aid of solutions of the nonlinear ODE by using the modified (G/G)-expansion method proposed recently, multiple exact traveling wave solutions are obtained and the traveling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions.

Keywords: New Modified Novikov Equation, Lie Classical Method, Nonclassical Method, Modified (G'/G)-Expansion Method, Traveling Wave Solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
11 RBF- based Meshless Method for Free Vibration Analysis of Laminated Composite Plates

Authors: Jeeoot Singh, Sandeep Singh, K. K. Shukla

Abstract:

The governing differential equations of laminated plate utilizing trigonometric shear deformation theory are derived using energy approach. The governing differential equations discretized by different radial basis functions are used to predict the free vibration behavior of symmetric laminated composite plates. Effect of orthotropy and span to thickness ratio on frequency parameter of simply supported laminated plate is presented. Numerical results show the accuracy and good convergence of radial basis functions.

Keywords: Composite plates, Meshfree method, free vibration, Shear deformation, RBFs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
10 Applying Half-Circle Fuzzy Numbers to Control System: A Preliminary Study on Development of Intelligent System on Marine Environment and Engineering

Authors: Chen-Yuan Chen, Wan-I Lee, Yi-Chaio Sui, Cheng-Wu Chen

Abstract:

This study focuses on the development of triangular fuzzy numbers, the revising of triangular fuzzy numbers, and the constructing of a HCFN (half-circle fuzzy number) model which can be utilized to perform more plural operations. They are further transformed for trigonometric functions and polar coordinates. From half-circle fuzzy numbers we can conceive cylindrical fuzzy numbers, which work better in algebraic operations. An example of fuzzy control is given in a simulation to show the applicability of the proposed half-circle fuzzy numbers.

Keywords: triangular fuzzy number, half-circle fuzzy numbers, predictions, polar coordinates, Lyapunov method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
9 Image Rotation Using an Augmented 2-Step Shear Transform

Authors: Hee-Choul Kwon, Heeyong Kwon

Abstract:

Image rotation is one of main pre-processing steps for image processing or image pattern recognition. It is implemented with a rotation matrix multiplication. It requires a lot of floating point arithmetic operations and trigonometric calculations, so it takes a long time to execute. Therefore, there has been a need for a high speed image rotation algorithm without two major time-consuming operations. However, the rotated image has a drawback, i.e. distortions. We solved the problem using an augmented two-step shear transform. We compare the presented algorithm with the conventional rotation with images of various sizes. Experimental results show that the presented algorithm is superior to the conventional rotation one.

Keywords: High speed rotation operation, image rotation, transform matrix, image processing, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
8 Solution of S3 Problem of Deformation Mechanics for a Definite Condition and Resulting Modifications of Important Failure Theories

Authors: Ranajay Bhowmick

Abstract:

Analysis of stresses for an infinitesimal tetrahedron leads to a situation where we obtain a cubic equation consisting of three stress invariants. This cubic equation, when solved for a definite condition, gives the principal stresses directly without requiring any cumbersome and time-consuming trial and error methods or iterative numerical procedures. Since the failure criterion of different materials are generally expressed as functions of principal stresses, an attempt has been made in this study to incorporate the solutions of the cubic equation in the form of principal stresses, obtained for a definite condition, into some of the established failure theories to determine their modified descriptions. It has been observed that the failure theories can be represented using the quadratic stress invariant and the orientation of the principal plane.

Keywords: Cubic equation, stress invariant, trigonometric, explicit solution, principal stress, failure criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233
7 2-Dimensional Finger Gesture Based Mobile Robot Control Using Touch Screen

Authors: O. Ejale, N.B. Siddique, R. Seals

Abstract:

The purpose of this study was to present a reliable mean for human-computer interfacing based on finger gestures made in two dimensions, which could be interpreted and adequately used in controlling a remote robot's movement. The gestures were captured and interpreted using an algorithm based on trigonometric functions, in calculating the angular displacement from one point of touch to another as the user-s finger moved within a time interval; thereby allowing for pattern spotting of the captured gesture. In this paper the design and implementation of such a gesture based user interface was presented, utilizing the aforementioned algorithm. These techniques were then used to control a remote mobile robot's movement. A resistive touch screen was selected as the gesture sensor, then utilizing a programmed microcontroller to interpret them respectively.

Keywords: 2-Dimensional interface, finger gesture, mobile robot control, touch screen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
6 On the Exact Solution of Non-Uniform Torsion for Beams with Axial Symmetric Cross-Section

Authors: A.Campanile, M. Mandarino, V. Piscopo, A. Pranzitelli

Abstract:

In the traditional theory of non-uniform torsion the axial displacement field is expressed as the product of the unit twist angle and the warping function. The first one, variable along the beam axis, is obtained by a global congruence condition; the second one, instead, defined over the cross-section, is determined by solving a Neumann problem associated to the Laplace equation, as well as for the uniform torsion problem. So, as in the classical theory the warping function doesn-t punctually satisfy the first indefinite equilibrium equation, the principal aim of this work is to develop a new theory for non-uniform torsion of beams with axial symmetric cross-section, fully restrained on both ends and loaded by a constant torque, that permits to punctually satisfy the previous equation, by means of a trigonometric expansion of the axial displacement and unit twist angle functions. Furthermore, as the classical theory is generally applied with good results to the global and local analysis of ship structures, two beams having the first one an open profile, the second one a closed section, have been analyzed, in order to compare the two theories.

Keywords: Non-uniform torsion, Axial symmetric cross-section, Fourier series, Helmholtz equation, FE method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148
5 Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling

Authors: Negar Riazifar, Nigel G. Stocks

Abstract:

This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals does not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate.

Keywords: Level crossing sampling, numerical stability, speech processing, trigonometric polynomial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73
4 Analytical Formulae for the Approach Velocity Head Coefficient

Authors: Abdulrahman Abdulrahman

Abstract:

Critical depth meters, such as abroad crested weir, Venture Flume and combined control flume are standard devices for measuring flow in open channels. The discharge relation for these devices cannot be solved directly, but it needs iteration process to account for the approach velocity head. In this paper, analytical solution was developed to calculate the discharge in a combined critical depth-meter namely, a hump combined with lateral contraction in rectangular channel with subcritical approach flow including energy losses. Also analytical formulae were derived for approach velocity head coefficient for different types of critical depth meters. The solution was derived by solving a standard cubic equation considering energy loss on the base of trigonometric identity. The advantage of this technique is to avoid iteration process adopted in measuring flow by these devices. Numerical examples are chosen for demonstration of the proposed solution.

Keywords: Broad crested weir, combined control meter, control structures, critical flow, discharge measurement, flow control, hydraulic engineering, hydraulic structures, open channel flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841
3 Jeffrey's Prior for Unknown Sinusoidal Noise Model via Cramer-Rao Lower Bound

Authors: Samuel A. Phillips, Emmanuel A. Ayanlowo, Rasaki O. Olanrewaju, Olayode Fatoki

Abstract:

This paper employs the Jeffrey's prior technique in the process of estimating the periodograms and frequency of sinusoidal model for unknown noisy time variants or oscillating events (data) in a Bayesian setting. The non-informative Jeffrey's prior was adopted for the posterior trigonometric function of the sinusoidal model such that Cramer-Rao Lower Bound (CRLB) inference was used in carving-out the minimum variance needed to curb the invariance structure effect for unknown noisy time observational and repeated circular patterns. An average monthly oscillating temperature series measured in degree Celsius (0C) from 1901 to 2014 was subjected to the posterior solution of the unknown noisy events of the sinusoidal model via Markov Chain Monte Carlo (MCMC). It was not only deduced that two minutes period is required before completing a cycle of changing temperature from one particular degree Celsius to another but also that the sinusoidal model via the CRLB-Jeffrey's prior for unknown noisy events produced a miniature posterior Maximum A Posteriori (MAP) compare to a known noisy events.

Keywords: Cramer-Rao Lower Bound (CRLB), Jeffrey's prior, Sinusoidal, Maximum A Posteriori (MAP), Markov Chain Monte Carlo (MCMC), Periodograms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426
2 Rayleigh-Bénard-Taylor Convection of Newtonian Nanoliquid

Authors: P. G. Siddheshwar, T. N. Sakshath

Abstract:

In the paper we make linear and non-linear stability analyses of Rayleigh-Bénard convection of a Newtonian nanoliquid in a rotating medium (called as Rayleigh-Bénard-Taylor convection). Rigid-rigid isothermal boundaries are considered for investigation. Khanafer-Vafai-Lightstone single phase model is used for studying instabilities in nanoliquids. Various thermophysical properties of nanoliquid are obtained using phenomenological laws and mixture theory. The eigen boundary value problem is solved for the Rayleigh number using an analytical method by considering trigonometric eigen functions. We observe that the critical nanoliquid Rayleigh number is less than that of the base liquid. Thus the onset of convection is advanced due to the addition of nanoparticles. So, increase in volume fraction leads to advanced onset and thereby increase in heat transport. The amplitudes of convective modes required for estimating the heat transport are determined analytically. The tri-modal standard Lorenz model is derived for the steady state assuming small scale convective motions. The effect of rotation on the onset of convection and on heat transport is investigated and depicted graphically. It is observed that the onset of convection is delayed due to rotation and hence leads to decrease in heat transport. Hence, rotation has a stabilizing effect on the system. This is due to the fact that the energy of the system is used to create the component V. We observe that the amount of heat transport is less in the case of rigid-rigid isothermal boundaries compared to free-free isothermal boundaries.

Keywords: Nanoliquid, rigid-rigid, rotation, single-phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761
1 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market

Authors: Cristian Păuna

Abstract:

In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.

Keywords: Algorithmic trading, automated investment system, DAX Deutscher Aktienindex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 454