Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
Application of Generalized NAUT B-Spline Curveon Circular Domain to Generate Circle Involute

Authors: Ashok Ganguly, Pranjali Arondekar

Abstract:

In the present paper, we use generalized B-Spline curve in trigonometric form on circular domain, to capture the transcendental nature of circle involute curve and uncertainty characteristic of design. The required involute curve get generated within the given tolerance limit and is useful in gear design.

Keywords: Bézier, Circle Involute, NAUT B-Spline, Spur Gear.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1056398

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455

References:


[1] A.Ganguly, P.Arondekar 2007: Generalized hyperbolic class of B-Spline curves. Far East J. of Mathematical Science(FJMS),26(3)579-590.
[2] A.Ganguly , P. Arondekar2009, A Study Related to interval B-Spline curve, Far East Journal of Applied Mathematics, Vol 34, number 2, ,pages 151-167.
[3] A. Ganguly, P. Arondekar 2010: least square approximation of to fit scattered data using B-Spline curve on circular domain, International Journal of Applied Mathematics & Eng. Sciences (To be published vol 1, 2010).
[4] Devid F.Roger, J.Alan Adams. 1990: Mathematical Elements for Computer Graphics. Tata McGraw-Hill, New York ,Edition II, pp 309-349.
[5] E Bugimghum 1928: Spur gear, McGraw hill book company, New York.
[6] Farin G. Curves and surfaces in computer Aided Geometric Design1993., 3rd ed.San Diego: Academic press.
[7] Fumitaka Higuchi et al. Dec 2006: Approximation of involute curve for CAD processing, YNU digital engineering laboratory.
[8] Gitin M maitra: Handbook of gear design2005, 2nd edition tata McGraw hill, New Delhi, pp 1.10-1.13,2.1-2.11 .
[9] Germain E. Randriambelosa 2004: Space curve approximation using G1 ball-spline Curve Applied mathematical research Express No 5, 153-167.
[10] G. Wang,Q. Chen,M.Zhou,2004 :NAUT B-Spline curves . Computer Aided Geometric Design,21,193-205.
[11] L├╝ ,Y.G.X, 2002, Uniform hyperbolic polynomial B-Spline curves. Computer Aided Geometric Design, 19,379-393.
[12] Lin Q. Rokne J G., July 1998, Disk Bézier curve (J). Computer Aided Geometric Design,15(7):721-737
[13] Pe.. na, J.M.,1997: Shape preserving representation for trigonometric polynomial curves. Computer Aided Geometric Design, 14,5-11.
[14] Q. Chen, G. Wang, 2003: A class of Bézier like curves, Computer Aided Geometric Design, 20, 29-39.
[15] Sederberg T.W., Farouki R.T. 1992: Approximation by interval Bézier curves. IEEE compute. Graph Appl, 15(2):87-95.
[16] Shen G and Patrikalakis N M 1998: Numerical and geometric properties of interval B-Spline . International Journal of Shape Modeling, 4(1/2):35-62.
[17] S. Barone 2001: Gear Geometric Design by B-Spline Curve Fitting and Sweep Surface Modelling Engineering with Computers, 17(1):66-74.
[18] Tuohy S.T., Maekawa T., Shen G., Patrikalakis N.M., 1997, Approximation of measured data with interval B-splines. Computer-Aided Design 29 (11), 791-799.