Evaluating Sinusoidal Functions by a Low Complexity Cubic Spline Interpolator with Error Optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Evaluating Sinusoidal Functions by a Low Complexity Cubic Spline Interpolator with Error Optimization

Authors: Abhijit Mitra, Harpreet Singh Dhillon

Abstract:

We present a novel scheme to evaluate sinusoidal functions with low complexity and high precision using cubic spline interpolation. To this end, two different approaches are proposed to find the interpolating polynomial of sin(x) within the range [- π , π]. The first one deals with only a single data point while the other with two to keep the realization cost as low as possible. An approximation error optimization technique for cubic spline interpolation is introduced next and is shown to increase the interpolator accuracy without increasing complexity of the associated hardware. The architectures for the proposed approaches are also developed, which exhibit flexibility of implementation with low power requirement.

Keywords: Arithmetic, spline interpolator, hardware design, erroranalysis, optimization methods.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1331445

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057

References:


[1] J. E. Volder, "The CORDIC Trigonometric Computing Technique", IRE Trans. Elect. Comput., vol. EC-8, pp. 330-334, Sep. 1959.
[2] J. C. Bajard, S. Kla and J. M. Muller, "BKM: A New Hardware Algorithm for Complex Elementary Functions," IEEE Trans. Comput., vol. 43, no. 8, pp. 955-963, Aug. 1994.
[3] P. J. Davis, Interpolation and Approximation. New York: Dover Publications, 1990.
[4] J. A. Pineiro and M. D. Ercegovac, "High-Speed Double-Precision Computation of Reciprocal, Division, Square Root, and Inverse Square Root," IEEE Trans. Comput., vol. 51, no. 12, pp. 1377-1388, 2002.
[5] I. Koren and O. Zinaty, "Evaluating Elementary Functions in a Numerical Coprocessor Based on Rational Approximations", IEEE Trans. Comput., vol. 39, pp. 1030-1037, Aug. 1990.
[6] P. T. P. Tang, "Table-lookup Algorithms for Elementary Functions and their Error Analysis", in Proc. 10th Symposium on Computer Arithmetic, 1991, pp. 232-236.
[7] M. J. Schulte and J. E. Stine, "Approximating Elementary Functions with Symmetric Bipartite Tables," IEEE Trans. Comput., vol. 48, no. 8, pp. 842-847, Aug. 1999.
[8] M. D. Ercegovac, T. Lang, J. M. Muller and A. Tisserand, "Reciprocation, Square Root, Inverse Square Root, and Some Elementary Functions using Small Multipliers," IEEE Trans Comput., vol. 49, no. 7, pp. 628- 637, July 2000.
[9] J. A. Pineiro, S. F. Oberman, J. M. Muller and J. D. Bruguera, "High- Speed Function Approximation using a Minimax Quadratic Interpolator," IEEE Trans. Comput., vol. 54, no. 3, pp. 304-318, March 2005.
[10] V. Paliouras, K. Konstantina and S. Thanos, "A Floating-point Processor for Fast and Accurate Sine/Cosine Evaluation", IEEE Trans. Circuit. Syst. II : Analaog and Digital Signal Processing, vol. 47, no. 5, 1991, pp. 441-451, May 2000.
[11] D. M. Lewis, "Interleaved Memory Function Interpolators with Application to an Accurate LNS Arithmetic Unit", IEEE Trans. Comput., vol. 43, pp. 974-982, Aug. 1994.
[12] V. Kantabutra, "On Hardware for Computing Exponential and Trigonometric Functions", IEEE Trans. Comput., vol. 45, no. 3, pp. 328-339, Mar. 1996.
[13] H. Ting, B. Liu and S. Chang, "An On-Chip Concurrent High Frequency Analog and Digital Sinusoidal Signal Generator", in Proc. IEEE Asia- Pacific Conference on Circuits and Systems, Tainan, Dec. 2004, pp.173- 176.
[14] K. E. Atkinson, An Introduction to Numerical Analysis. New York: John Wiley & Sons, 1989.
[15] H. S. Dhillon and A. Mitra, "A Low Power Architecture of Digital Sinusoid Generator using Cubic Spline Interpolation", IETE J. Edu., vol. 47, no. 3, pp. 129-136, July-Sept. 2006.
[16] I. Koren, Computer Arithmetic Algorithms. Englewood Cliffs, NJ: Prentice-Hall, 1993.
[17] S. McKinley and M. Levine. Cubic Spline Interpolation (Online). Available: http://www-lmpa.univ-littoral.fr/ bouhamid/dossier fichiers/cubicspline.PDF.
[18] M. J. Schulte and J. E. Stine, "Approximating Elementary Functions with Symmetric Bipartite Tables", IEEE Trans. Comput., vol. 48, no. 8, pp. 842-847, August 1999.
[19] J. Cao, B. Wei and J. Cheng, "High-performance Architectures for Elementary Function Generation", in Proc. 15th IEEE Symposium on Computer Arithmetic, 2001, pp. 136-144.