Search results for: Powder metallurgy steel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 995

Search results for: Powder metallurgy steel

365 Briquetting of Metal Chips by Controlled Impact: Experimental Study

Authors: Todor Penchev, Dimitar Karastojanov, Ivan Altaparmakov

Abstract:

For briquetting of metal chips are used hydraulic and mechanical presses. The density of the briquettes in this case is about 60% - 70 % on the density of solid metal. In this work are presented the results of experimental studies for briquetting of metal chips, by using a new technology for impact briquetting. The used chips are by Armco iron, steel, cast iron, copper, aluminum and brass. It has been found that: (i) in a controlled impact the density of the briquettes can be increases up to 30%; (ii) at the same specific impact energy Es (J/sm3) the density of the briquettes increases with increasing of the impact velocity; (iii), realization of the repeated impact leads to decrease of chips density, which can be explained by distribution of elastic waves in the briquette.

Keywords: Briquetting, chips briquetting, impact briquetting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
364 Earth Grid Safety Consideration: Civil Upgrade Works for an Energised Substation

Authors: M. Nassereddine, A. Hellany, M. Nagrial, J. Rizk

Abstract:

The demand on High voltage (HV) infrastructures is growing due to the corresponding growth in industries and population. Many areas are being developed and therefore require additional electrical power to comply with the demand. Substation upgrade is one of the rapid solutions to ensure the continuous supply of power to customers. This upgrade requires civil modifications to structures and fences. The civil work requires excavation and steel works that may create unsafe touch conditions. This paper presents a brief theoretical overview of the touch voltage inside and around substations and uses CDEGS software to simulate a case study.

Keywords: Earth safety, High Voltage, AC interference, Earthing Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2176
363 Thermo-Elastic Properties of Artificial Limestone Bricks with Wood Sawdust

Authors: Paki Turgut, Mehmet Gumuscu

Abstract:

In this study, artificial limestone brick samples are produced by using wood sawdust wastes (WSW) having different grades of sizes and limestone powder waste (LPW). The thermo-elastic properties of produced brick samples in various WSW amounts are investigated. At 30% WSW replacement with LPW in the brick sample the thermal conductivity value is effectively reduced and the reduction in the thermal conductivity value of brick sample at 30% WSW replacement with LPW is about 38.9% as compared with control sample. The energy conservation in buildings by using LPW and WSW in masonry brick material production having low thermal conductivity reduces energy requirements. A strong relationship is also found among the thermal conductivity, unit weight and ultrasonic pulse velocity values of brick samples produced. It shows a potential to be used for walls, wooden board substitute, alternative to the concrete blocks, ceiling panels, sound barrier panels, absorption materials etc.

Keywords: Limestone dust, masonry brick, thermo-elastic properties, wood sawdust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
362 Design Alternatives for Lateral Force-Resisting Systems of Tall Buildings in Dubai, UAE

Authors: Mohammad AlHamaydeh, Sherif Yehia, Nader Aly, Ammar Douba, Layane Hamzeh

Abstract:

Four design alternatives for lateral force-resisting systems of tall buildings in Dubai, UAE are presented. Quantitative comparisons between the different designs are also made. This paper is intended to provide different feasible lateral systems to be used in Dubai in light of the available seismic hazard studies of the UAE. The different lateral systems are chosen in conformance with the International Building Code (IBC). Moreover, the expected behavior of each system is highlighted and light is shed on some of the cost implications associated with lateral system selection.

Keywords: Concrete, Dual, Dubai UAE Seismicity, Special Moment-Resisting Frames (SMRF), Special Shear Wall, Steel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3482
361 Hydrogen Permeability of BSCY Proton-Conducting Perovskite Membrane

Authors: M. Heidari, A. Safekordi, A. Zamaniyan, E. Ganji Babakhani, M. Amanipour

Abstract:

Perovskite-type membrane Ba0.5Sr0.5Ce0.9Y0.1O3-δ (BSCY) was successfully synthesized by liquid citrate method. The hydrogen permeation and stability of BSCY perovskite-type membranes were studied at high temperatures. The phase structure of the powder was characterized by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to characterize microstructures of the membrane sintered under various conditions. SEM results showed that increasing in sintering temperature, formed dense membrane with clear grains. XRD results for BSCY membrane that sintered in 1150 °C indicated single phase perovskite structure with orthorhombic configuration, and SEM results showed dense structure with clear grain size which is suitable for permeation tests. Partial substitution of Sr with Ba in SCY structure improved the hydrogen permeation flux through the membrane due to the larger ionic radius of Ba2+. BSCY membrane shows high hydrogen permeation flux of 1.6 ml/min.cm2 at 900 °C and partial pressure of 0.6.

Keywords: Hydrogen separation, perovskite, proton conducting membrane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1007
360 Modeling Studies for Electrocoagulation

Authors: A. Genç, R. Hacıoğlu, B. Bakırcı

Abstract:

Synthetic oily wastewaters were prepared from metal working fluids (MWF). Electrocoagulation experiments were performed under constant voltage application. The current, conductivity, pH, dissolved oxygen concentration and temperature were recorded on line at every 5 seconds during the experiments. Effects of applied voltage differences, electrode materials and distance between electrodes on removal efficiency have been investigated. According to the experimental results, the treatment of MWF wastewaters by iron electrodes rather than aluminum and stainless steel was much quicker; and the distance between electrodes should be less than 1cm. The electrocoagulation process was modeled by using block oriented approach and found out that it can be modeled as a single input and multiple output system. Modeling studies indicates that the electrocoagulation process has a nonlinear model structure.

Keywords: Electrocoagulation, oily wastewater, SIMO systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
359 Mechanical Behaviour Analysis of Polyester Polymer Mortars Modified with Recycled GFRP Waste Materials

Authors: M.C.S. Ribeiro, J.P. Meixedo, A. Fiúza, M.L. Dinis, Ana C. Meira Castro, F.J.G. Silva, C. Costa, F. Ferreira, M.R. Alvim

Abstract:

In this study the effect of incorporation of recycled glass-fibre reinforced polymer (GFRP) waste materials, obtained by means of milling processes, on mechanical behaviour of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste powder and fibres, with distinct size gradings, were incorporated into polyester based mortars as sand aggregates and filler replacements. Flexural and compressive loading capacities were evaluated and found better than unmodified polymer mortars. GFRP modified polyester based mortars also show a less brittle behaviour, with retention of some loading capacity after peak load. Obtained results highlight the high potential of recycled GFRP waste materials as efficient and sustainable reinforcement and admixture for polymer concrete and mortars composites, constituting an emergent waste management solution.

Keywords: GFRP waste, Mechanical behaviour, Polymer mortars, Recyclability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2608
358 Enhanced Quality of Zeolite LSX: Studying Effect of Crystallized Containers

Authors: Jitlada Chumee

Abstract:

Low silica type X (LSX) Zeolite is one of useful material in many manufacturing due to the advantage properties including high surface area, stability, microporous crystalline aluminosilicates and positive ion in an extra–framework. The LSX was used rice husk silica source which obtained by leaching with hydrochloric acid and calcination at 500C. To improve the synthesis method, the LSX was crystallizated in Teflon–lined autoclave will expedite deceasing of the amorphous particles. The mixed gel with composition of 5.5 Na2O : 1.65 K2O : Al2O3 : 2.2 SiO2 : 122 H2O was crystallized in different container (Polypropylene bottom and Teflon–lined autoclave). The obtained powder was characterized by X–ray diffraction (XRD), X–ray fluorescence spectrometry, N2 adsorption-desorption analysis BET surface area Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy to justify the quality of zeolite. The results showed the crystallized zeolite in Teflon lined autoclave has 102.8 nm of crystal size, 286 m2/g of surface area and fewer amounts of round amorphous particles when compared with the crystallized zeolite in Polypropylene.

Keywords: LSX Zeolite, rice husk and crystallized container.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2594
357 Eccentric Loading of CFDST Columns

Authors: Trevor N. Haas, Alexander Koen

Abstract:

Columns have traditionally been constructed of reinforced concrete or structural steel. Much attention was allocated to estimate the axial capacity of the traditional column sections to the detriment of other forms of construction. Other forms of column construction such as Concrete Filled Double Skin Tubes received little research attention, and almost no attention when subjected to eccentric loading. This paper investigates the axial capacity of columns when subjected to eccentric loading. The experimental axial capacities are compared to other established theoretical formulae on concentric loading to determine a possible relationship. The study found a good correlation between the reduction in axial capacity for different column lengths and hollow section ratios.

Keywords: CSDST, CFST, Axial Capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3142
356 Phase Transformation Temperatures for Shape Memory Alloy Wire

Authors: Tan Wee Choon, Abdul Saad Salleh, Saifulnizan Jamian, Mohd. Imran Ghazali

Abstract:

Phase transformation temperature is one of the most important parameters for the shape memory alloys (SMAs). The most popular method to determine these phase transformation temperatures is the Differential Scanning Calorimeter (DSC), but due to the limitation of the DSC testing itself, it made it difficult for the finished product which is not in the powder form. A novel method which uses the Universal Testing Machine has been conducted to determine the phase transformation temperatures. The Flexinol wire was applied with force and maintained throughout the experiment and at the same time it was heated up slowly until a temperature of approximately 1000C with direct current. The direct current was then slowly decreased to cool down the temperature of the Flexinol wire. All the phase transformation temperatures for Flexinol wire were obtained. The austenite start at 52.540C and austenite finish at 60.900C, while martensite start at 44.780C and martensite finish at 32.840C.

Keywords: Phase transformation temperature, Robotic, Shapememory alloy, Universal Testing Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3900
355 Structural Safety Evaluation of Zip-Line Due to Dynamic Impact Load

Authors: Bu Seog Ju, Jae Sang Kim, Woo Young Jung

Abstract:

In recent year, with recent increase of interest towards leisure sports, increased number of Zip-Line or Zip-Wire facilities has built. Many researches have been actively conducted on the emphasis of the cable and the wire at the bridge. However, very limited researches have been conducted on the safety of the Zip-Line structure. In fact, fall accidents from Zip-Line have been reported frequently. Therefore, in this study, the structural safety of Zip-Line under dynamic impact loading condition were evaluated on the previously installed steel cable for leisure (Zip-Line), using 3-dimensional nonlinear Finite Element (FE) model. The result from current study would assist assurance of systematic stability of Zip-Line.

Keywords: Zip-Line, Wire, Cable, 3D FE Model, Safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4040
354 Utilization of Bioactive Components Produced from Fermented Soybean (Natto) in Beef Burger

Authors: F. M. Abu-Salem, M. H. Mahmoud, A. Y. Gibriel, M. H. El-Kalyoubi, A. A. Abou-Arab Arab

Abstract:

Soybean Natto powder was added to the burger in order to enhance the oxidative stability as well as decreases the microbial spoilage. The soybean bioactives compound (soybean Natto) as antioxidant and antimicrobial were added at level of 1, 2 and 3%. Chemical analysis and physical properties were affected by soybean Natto addition. All the tested soybean Natto additives showed strong antioxidant properties. The microbiological indicators were significantly (P < 0.05) affected by the addition of the soybean Natto. Decreasing trends of different extent were also observed in samples of the treatments for total viable counts, Coliform, Staphylococcus aureus, yeast and molds. Storage period was significantly (P < 0.05) affected on microbial counts in all samples Staphylococcus aureus were the most sensitive microbe followed by Coliform group of the sample containing soybean Natto. Sensory attributes were also performed, added soybean Natto exhibits beany flavor which was clear about samples of 3% soybean Natto.

Keywords: Antioxidant, antimicrobial, bioactive peptide, antioxidant peptides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
353 An Exhaustive Review of Die Sinking Electrical Discharge Machining Process and Scope for Future Research

Authors: M. M. Pawade, S. S. Banwait

Abstract:

Electrical Discharge Machine (EDM) is especially used for the manufacturing of 3-D complex geometry and hard material parts that are extremely difficult-to-machine by conventional machining processes. In this paper authors review the research work carried out in the development of die-sinking EDM within the past decades for the improvement of machining characteristics such as Material Removal Rate, Surface Roughness and Tool Wear Ratio. In this review various techniques reported by EDM researchers for improving the machining characteristics have been categorized as process parameters optimization, multi spark technique, powder mixed EDM, servo control system and pulse discriminating. At the end, flexible machine controller is suggested for Die Sinking EDM to enhance the machining characteristics and to achieve high-level automation. Thus, die sinking EDM can be integrated with Computer Integrated Manufacturing environment as a need of agile manufacturing systems.

Keywords: Electrical Discharge Machine, Flexible Machine Controller, Material Removal Rate, Tool Wear Ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5257
352 Residual Modulus of Elasticity of Self-Compacting Concrete Incorporated Unprocessed Waste Fly Ash after Expose to the Elevated Temperature

Authors: Mohammed Abed, Rita Nemes, Salem Nehme

Abstract:

The present study experimentally investigated the impact of incorporating unprocessed waste fly ash (UWFA) on the residual mechanical properties of self-compacting concrete (SCC) after exposure to elevated temperature. Three mixtures of SCC have been produced by replacing the cement mass by 0%, 15% and 30% of UWFA. Generally, the fire resistance of SCC has been enhanced by replacing the cement up to 15% of UWFA, especially in case of residual modulus of elasticity which considers more sensitive than other mechanical properties at elevated temperature. However, a strong linear relationship has been observed between the residual flexural strength and modulus of elasticity, where both of them affected significantly by the cracks appearance and propagation as a result of elevated temperature. Sustainable products could be produced by incorporating unprocessed waste powder materials in the production of concrete, where the waste materials, CO2 emissions, and the energy needed for processing are reduced.

Keywords: Self-compacting high-performance concrete, unprocessed waste fly ash, fire resistance, residual modulus of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 667
351 Estimating the Technological Deviation Impact on the Value of the Output Parameter of the Induction Converter

Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan

Abstract:

Based on the experimental data, the impact of resistance and reactance of the winding, as well as the magnetic permeability of the magnetic circuit steel material on the value of the electromotive force of the induction converter is investigated. The obtained results allow estimating the main technological spreads and determining the maximum level of the electromotive force change. By the method of experiment planning, the expression of a polynomial for the electromotive force which can be used to estimate the adequacy of mathematical models to be used at the investigation and design of induction converters is obtained.

Keywords: Induction converter, electromotive force, expectation, technological spread, deviation, planning an experiment, polynomial, confidence level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
350 A Model of a Heat Radiation on a Mould Surface in the Car Industry

Authors: J. Mlýnek, R. Srb

Abstract:

This article is focused on the calculation of heat radiation intensity and its optimization on an aluminum mould surface. The inside of the mould is sprinkled with a special powder and its outside is heated by infra heaters located above the mould surface, up to a temperature of 250°C. By this way artificial leathers in the car industry are produced (e. g. the artificial leather on a car dashboard). A mathematical model of heat radiation of infra heaters on a mould surface is described in this paper. This model allows us to calculate a heat-intensity radiation on the mould surface for the concrete location of infra heaters above the mould surface. It is necessary to ensure approximately the same heat intensity radiation on the mould surface by finding a suitable location for the infra heaters, and in this way the same material structure and color of artificial leather. In the model we have used a genetic algorithm to optimize the radiation intensity on the mould surface. Experimental measured values for the heat radiation intensity by a sensor in the surroundings of an infra heater are used for the calculation procedures. A computational procedure was programmed in language Matlab.

Keywords: Genetic algorithm, mathematical model of heat radiation, optimization of radiation intensity, software implementation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
349 Research on Static and Dynamic Behavior of New Combination of Aluminum Honeycomb Panel and Rod Single-layer Latticed Shell

Authors: Xu Chen, Zhao Caiqi

Abstract:

In addition to the advantages of light weight, resistant corrosion and ease of processing, aluminum is also applied to the long-span spatial structures. However, the elastic modulus of aluminum is lower than that of the steel. This paper combines the high performance aluminum honeycomb panel with the aluminum latticed shell, forming a new panel-and-rod composite shell structure. Through comparative analysis between the static and dynamic performance, the conclusion that the structure of composite shell is noticeably superior to the structure combined before.

Keywords: Combination of aluminum honeycomb panel and rod latticed shell, dynamic performance, response spectrum analysis, seismic properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
348 Slow Pyrolysis of Biowastes: Environmental, Exergetic, and Energetic Assessment

Authors: Daniela Zalazar-Garcia, Erick Torres, Germán Mazza

Abstract:

Slow pyrolysis of a pellet of pistachio waste was studied using a lab-scale stainless-steel reactor. Experiments were conducted at different heating rates (5, 10, and 15 K/min). A 3-E (environmental, exergetic, and energetic) analysis for the processing of 20 kg/h of biowaste was carried out. Experimental results showed that biochar and gas yields decreased with an increase in the heating rate (43% to 36% and 28% to 24%, respectively), while the bio-oil yield increased (29% to 40%). Finally, from the 3-E analysis and the experimental results, it can be suggested that an increase in the heating rate resulted in a higher pyrolysis exergetic efficiency (70%), due to an increase of the bio-oil yield with high-energy content.

Keywords: 3E assessment, biowaste pellet, life cycle assessment, slow pyrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 432
347 Thermodynamic Analysis of Activated Carbon- CO2 based Adsorption Cooling Cycles

Authors: Skander Jribi, Anutosh Chakraborty, Ibrahim I. El-Sharkawy, Bidyut Baran Saha, Shigeru Koyama

Abstract:

Heat powered solid sorption is a feasible alternative to electrical vapor compression refrigeration systems. In this paper, activated carbon (powder type Maxsorb and fiber type ACF-A10)- CO2 based adsorption cooling cycles are studied using the pressuretemperature- concentration (P-T-W) diagram. The specific cooling effect (SCE) and the coefficient of performance (COP) of these two cooling systems are simulated for the driving heat source temperatures ranging from 30 ºC to 90 ºC in terms of different cooling load temperatures with a cooling source temperature of 25 ºC. It is found from the present analysis that Maxsorb-CO2 couple shows higher cooling capacity and COP. The maximum COPs of Maxsorb-CO2 and ACF(A10)-CO2 based cooling systems are found to be 0.15 and 0.083, respectively. The main innovative feature of this cooling cycle is the ability to utilize low temperature waste heat or solar energy using CO2 as the refrigerant, which is one of the best alternative for applications where flammability and toxicity are not allowed.

Keywords: Activated carbon, Adsorption cooling system, Carbon dioxide, Performance evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3622
346 Iron Recovery from Red Mud as Zero-Valent Iron Metal Powder Using Direct Electrochemical Reduction Method

Authors: Franky Michael Hamonangan Siagian, Affan Maulana, Himawan Tri Bayu Murti Petrus, Panut Mulyono, Widi Astuti

Abstract:

In this study, the feasibility of the direct electrowinning method was used to produce zero-valent iron from red mud. The red mud sample came from the Tayan mine, Indonesia, which contains high hematite (Fe2O3). Before electrolysis, the samples were characterized by various analytical techniques (ICP-AES, SEM, XRD) to determine their chemical composition and mineralogy. The direct electrowinning method of red mud suspended in NaOH was introduced at low temperatures ranging from 30-110 °C. Current density and temperature variations were carried out to determine the optimum operation of the direct electrowinning process. Cathode deposits and residues in electrochemical cells were analyzed using XRD, XRF, and SEM to determine the chemical composition and current recovery. The low-temperature electrolysis current efficiency on Redmud can reach 11.8% recovery at a current density of 796 A/m². The moderate performance of the process was investigated with red mud, which was attributed to the troublesome adsorption of red mud particles on the cathode, making the reduction far less efficient than that with hematite.

Keywords: Alumina, electrochemical reduction, iron production, red mud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144
345 Low Power Consuming Electromagnetic Actuators for Pulsed Pilot Stages

Authors: M. Honarpardaz, Z. Zhang, J. Derkx, A. Trangärd, J. Larsson

Abstract:

Pilot stages are one of the most common positioners and regulators in industry. In this paper, we present two novel concepts for pilot stages with low power consumption to regulate a pneumatic device. Pilot 1, first concept, is designed based on a conventional frame core electro-magnetic actuator and a leaf spring to control the air flow and pilot 2 has an axisymmetric actuator and spring made of non-oriented electrical steel. Concepts are simulated in a system modeling tool to study their dynamic behavior. Both concepts are prototyped and tested. Experimental results are comprehensively analyzed and compared. The most promising concept that consumes less than 8 mW is highlighted and presented.

Keywords: Electro-magnetic actuator, multidisciplinary system, low power consumption, pilot stage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 930
344 Rapid Expansion Supercritical Solution (RESS) Carbon Dioxide as an Environmental Friendly Method for Ginger Rhizome Solid Oil Particles Formation

Authors: N. A. Zainuddin, I. Norhuda, I. S. Adeib, A. N. Mustapa, S. H. Sarijo

Abstract:

Recently, RESS (Rapid Expansion Supercritical Solution) method has been used by researchers to produce fine particles for pharmaceutical drug substances. Since RESS technology acknowledges a lot of benefits compare to conventional method of ginger extraction, it is suggested to use this method to explore particle formation of bioactive compound from powder ginger. The objective of this research is to produce direct solid oil particles formation from ginger rhizome which contains valuable compounds by using RESS-CO2 process. RESS experiments were carried using extraction pressure of 3000, 4000, 5000, 6000 and 7000psi and at different extraction temperature of 40, 45, 50, 55, 60, 65 and 70°C for 40 minutes extraction time and contant flowrate (24ml/min). From the studies conducted, it was found that at extraction pressure 5000psi and temperature 40°C, the smallest particle size obtained was 2.22μm on 99 % reduction from the original size of 370μm.

Keywords: Particle size, RESS, solid oil particle, supercritical carbon dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 922
343 Effect of Zr Addition on Mechanical Properties of Cr-Mo Plastic Mold Steels

Authors: Hyun-Ho Kim, Seok-Jae Lee, Oh-Yeon Lee

Abstract:

We investigated the effects of the additions of Zr and other alloying elements on the mechanical properties and microstructure in Cr-Mo plastic mold steels. The addition of alloying elements changed the microstructure of the normalized samples from the upper bainite to lower bainite due to the increased hardenability. The tempering temperature influenced the strength and hardness values, especially the phenomenon of 350oC embrittlement was observed. The alloy additions of Cr, Mo, and V improved the resistance to the temper embrittlement. The addition of Zr improved the tensile strength and yield strength, but the impact energy was sharply decreased. It may be caused by the formation of Zr-MnS inclusion and rectangular-shaped Zr inclusion due to the Zr addition.

Keywords: Inclusions, mechanical properties, plastic mold steel, Zr addition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
342 Nano Effects of Nitrogen Ion Implantation on TiN Hard Coatings Deposited by PVD and IBAD

Authors: Branko Skoric, Aleksandar Miletic, Pal Terek, Lazar Kovacevic, Milan Kukuruzovic

Abstract:

In this paper, we present the results of a study of TiN thin films which are deposited by a Physical Vapour Deposition (PVD) and Ion Beam Assisted Deposition (IBAD). In the present investigation the subsequent ion implantation was provided with N5+ ions. The ion implantation was applied to enhance the mechanical properties of surface. The thin film deposition process exerts a number of effects such as crystallographic orientation, morphology, topography, densification of the films. A variety of analytic techniques were used for characterization, such as scratch test, calo test, Scanning electron microscopy (SEM), Atomic Force Microscope (AFM), X-ray diffraction (XRD) and Energy Dispersive X-ray analysis (EDAX).

Keywords: Steel, coating, super hard, ion implantation, nanohardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1185
341 Impregnation of Cupper into Kanuma Volcanic Ash Soil to Improve Mercury Sorption Capacity

Authors: Jatindra N. Bhakta, Yukihiro Munekage

Abstract:

The present study attempted to improve the Mercury (Hg) sorption capacity of kanuma volcanic ash soil (KVAS) by impregnating the cupper (Cu). Impregnation was executed by 1 and 5% Cu powder and sorption characterization of optimum Hg removing Cu impregnated KVAS was performed under different operational conditions, contact time, solution pH, sorbent dosage and Hg concentration using the batch operation studies. The 1% Cu impregnated KVAS pronounced optimum improvement (79%) in removing Hg from water compare to control. The present investigation determined the equilibrium state of maximum Hg adsorption at 6 h contact period. The adsorption revealed a pH dependent response and pH 3.5 showed maximum sorption capacity of Hg. Freundlich isotherm model is well fitted with the experimental data than that of Langmuir isotherm. It can be concluded that the Cu impregnation improves the Hg sorption capacity of KVAS and 1% Cu impregnated KVAS could be employed as cost-effective adsorbent media for treating Hg contaminated water.

Keywords: Cupper, impregnation, isotherm, kanuma volcanic ash soil, mercury, sorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
340 Evaluation of the Displacement-Based and the Force-Based Adaptive Pushover Methods in Seismic Response Estimation of Irregular Buildings Considering Torsional Effects

Authors: R. Abbasnia, F. Mohajeri Nav, S. Zahedifar, A. Tajik

Abstract:

Recent years, adaptive pushover methods have been developed for seismic analysis of structures. Herein, the accuracy of the displacement-based adaptive pushover (DAP) method, which is introduced by Antoniou and Pinho [2004], is evaluated for Irregular buildings. The results are compared to the force-based procedure. Both concrete and steel frame structures, asymmetric in plan and elevation are analyzed and also torsional effects are taking into the account. These analyses are performed using both near fault and far fault records. In order to verify the results, the Incremental Dynamic Analysis (IDA) is performed.

Keywords: Pushover Analysis, DAP, IDA, Torsion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3059
339 Prediction of Compressive Strength of SCC Containing Bottom Ash using Artificial Neural Networks

Authors: Yogesh Aggarwal, Paratibha Aggarwal

Abstract:

The paper presents a comparative performance of the models developed to predict 28 days compressive strengths using neural network techniques for data taken from literature (ANN-I) and data developed experimentally for SCC containing bottom ash as partial replacement of fine aggregates (ANN-II). The data used in the models are arranged in the format of six and eight input parameters that cover the contents of cement, sand, coarse aggregate, fly ash as partial replacement of cement, bottom ash as partial replacement of sand, water and water/powder ratio, superplasticizer dosage and an output parameter that is 28-days compressive strength and compressive strengths at 7 days, 28 days, 90 days and 365 days, respectively for ANN-I and ANN-II. The importance of different input parameters is also given for predicting the strengths at various ages using neural network. The model developed from literature data could be easily extended to the experimental data, with bottom ash as partial replacement of sand with some modifications.

Keywords: Self compacting concrete, bottom ash, strength, prediction, neural network, importance factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
338 The Feasibility of Using Milled Glass Wastes in Concrete to Resist Freezing-Thawing Action

Authors: Raed Abendeh, Mousa Bani Baker, Zaydoun Abu Salem, Heham Ahmad

Abstract:

The using of waste materials in the construction industry can reduce the dependence on the natural aggregates which are going at the end to deplete. The glass waste is generated in a huge amount which can make one of its disposals in concrete industry effective not only as a green solution but also as an advantage to enhance the performance of mechanical properties and durability of concrete. This article reports the performance of concrete specimens containing different percentages of milled glass waste as a partial replacement of cement (Powder), when they are subject to cycles of freezing and thawing. The tests were conducted on 75-mm cubes and 75 x 75 x 300-mm prisms. Compressive strength based on laboratory testing and non-destructive ultrasonic pulse velocity test were performed during the action of freezing-thawing cycles (F/T). The results revealed that the incorporation of glass waste in concrete mixtures is not only feasible but also showed generally better strength and durability performance than control concrete mixture. It may be said that the recycling of waste glass in concrete mixes is not only a disposal way, but also it can be an exploitation in concrete industry.

Keywords: Durability, glass waste, freeze-thaw cycles, nondestructive test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2621
337 A Composite Developed from a Methyl Methacrylate and Embedded Eppawala Hydroxyapatite for Orthopedics

Authors: H. K. G. K. D. K. Hapuhinna, R. D. Gunaratne, H. M. J. C. Pitawala

Abstract:

This study aimed to find out chemical and structural suitability of synthesized eppawala hydroxyapatite composite as bone cement, by comparing and contrasting it with human bone as well as commercially available bone cement, which is currently used in orthopedic surgeries. Therefore, a mixture of commercially available bone cement and its liquid monomer, commercially available methyl methacrylate (MMA) and a mixture of solid state synthesized eppawala hydroxyapatite powder with commercially available MMA were prepared as the direct substitution for bone cement. Then physical and chemical properties including composition, crystallinity, presence of functional groups, thermal stability, surface morphology, and microstructural features were examined compared to human bone. Results show that there is a close similarity between synthesized product and human bone and it has exhibited high thermal stability, good crystalline and porous properties than the commercial product. Finally, the study concluded that synthesized hydroxyapatite composite can be used directly as a substitution for commercial bone cement.

Keywords: Hydroxyapatite, bone cement, methyl methacrylate, orthopedics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577
336 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production

Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia

Abstract:

A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.

Keywords: Nano-alumina-zirconia, composite catalyst, thin film, biodiesel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697