Search results for: High speed cutting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6823

Search results for: High speed cutting

5983 Transient Three Dimensional FE Modeling for Thermal Analysis of Pulsed Current Gas Tungsten Arc Welding of Aluminum Alloy

Authors: N. Karunakaran, V. Balasubramanian

Abstract:

This paper presents the results of a study aimed at establishing the temperature distribution during the welding of aluminum alloy plates by Pulsed Current Gas Tungsten Arc Welding (PCGTAW) and Constant Current Gas Tungsten Arc Welding (CCGTAW) processes. Pulsing of the GTA welding current influences the dimensions and solidification rate of the fused zone, it also reduces the weld pool volume hence a narrower bead. In this investigation, the base material considered was aluminum alloy AA 6351 T6, which is finding use in aircraft, automobile and high-speed train components. A finite element analysis was carried out using ANSYS, and the results of the FEA were compared with the experimental results. It is evident from the study that the finite element analysis using ANSYS can be effectively used to model PCGTAW process for finding temperature distribution.

Keywords: Gas tungsten arc welding, pulsed current, finite element analysis, thermal analysis, aluminum alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246
5982 Numerical and Experimental Investigation of the Aerodynamic Performances of Counter-Rotating Rotors

Authors: Ibrahim Beldjilali, Adel Ghenaiet

Abstract:

The contra-rotating axial machine is a promising solution for several applications, where high pressure and efficiencies are needed. Also, they allow reducing the speed of rotation, the radial spacing and a better flexibility of use. However, this requires a better understanding of their operation, including the influence of second rotor on the overall aerodynamic performances. This work consisted of both experimental and numerical studies to characterize this counter-rotating fan, especially the analysis of the effects of the blades stagger angle and the inter-distance between the rotors. The experimental study served to validate the computational fluid dynamics model (CFD) used in the simulations. The numerical study permitted to cover a wider range of parameter and deeper investigation on flow structures details, including the effects of blade stagger angle and inter-distance, associated with the interaction between the rotors. As a result, there is a clear improvement in aerodynamic performance compared with a conventional machine.

Keywords: Aerodynamic performance, axial fan, counter rotating rotors, CFD, experimental study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698
5981 Effect of High-Energy Ball Milling on the Electrical and Piezoelectric Properties of (K0.5Na0.5)(Nb0.9Ta0.1)O3 Lead-Free Piezoceramics

Authors: Chongtham Jiten, K. Chandramani Singh, Radhapiyari Laishram

Abstract:

Nanocrystalline powders of the lead-free piezoelectric material, tantalum-substituted potassium sodium niobate (K0.5Na0.5)(Nb0.9Ta0.1)O3 (KNNT), were produced using a Retsch PM100 planetary ball mill by setting the milling time to 15h, 20h, 25h, 30h, 35h and 40h, at a fixed speed of 250rpm. The average particle size of the milled powders was found to decrease from 12nm to 3nm as the milling time increases from 15h to 25h, which is in agreement with the existing theoretical model. An anomalous increase to 98nm and then a drop to 3nm in the particle size were observed as the milling time further increases to 30h and 40h respectively. Various sizes of these starting KNNT powders were used to investigate the effect of milling time on the microstructure, dielectric properties, phase transitions and piezoelectric properties of the resulting KNNT ceramics. The particle size of starting KNNT was somewhat proportional to the grain size. As the milling time increases from 15h to 25h, the resulting ceramics exhibit enhancement in the values of relative density from 94.8% to 95.8%, room temperature dielectric constant (εRT) from 878 to 1213, and piezoelectric charge coefficient (d33) from 108pC/N to 128pC/N. For this range of ceramic samples, grain size refinement suppresses the maximum dielectric constant (εmax), shifts the Curie temperature (Tc) to a lower temperature and the orthorhombic-tetragonal phase transition (Tot) to a higher temperature. Further increase of milling time from 25h to 40h produces a gradual degradation in the values of relative density, εRT, and d33 of the resulting ceramics.

Keywords: Ceramics, Dielectric, High-energy milling, Perovskite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553
5980 Simulation Study on the Indoor Thermal Comfort with Insulation on Interior Structural Components of Super High-Rise Residences

Authors: Y. Wang, H. Fukuda, A. Ozaki, H. Sato

Abstract:

In this study, we discussed the effects on the thermal comfort of super high-rise residences that how effected by the high thermal capacity structural components. We considered different building orientations, structures, and insulation methods. We used the dynamic simulation software THERB (simulation of the thermal environment of residential buildings). It can estimate the temperature, humidity, sensible temperature, and heating/cooling load for multiple buildings. In the past studies, we examined the impact of air-conditioning loads (hereinafter referred to as AC loads) on the interior structural parts and the AC-usage patterns of super-high-rise residences. Super-high-rise residences have more structural components such as pillars and beams than do ordinary apartment buildings. The skeleton is generally made of concrete and steel, which have high thermal-storage capacities. The thermal-storage capacity of super-high-rise residences is considered to have a larger impact on the AC load and thermal comfort than that of ordinary residences. We show that the AC load of super-high-rise units would be reduced by installing insulation on the surfaces of interior walls that are not usually insulated in Japan.

Keywords: High-rise Residences, AC Load, Thermal Comfort, Thermal Storage, Insulation Patterns

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
5979 Graphene/h-BN Heterostructure Interconnects

Authors: Nikhil Jain, Yang Xu, Bin Yu

Abstract:

The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (h- BN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/h- BN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects.

Keywords: Two-dimensional nanosheet, graphene, hexagonal boron nitride, heterostructure, interconnects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
5978 High-Rises and Urban Design: The Reasons for Unsuccessful Placemaking with Residential High-Rises in England

Authors: E. Kalcheva, A. Taki, Y. Hadi

Abstract:

High-rises and placemaking is an understudied combination which receives more and more interest with the proliferation of this typology in many British cities. The reason for studying three major cities in England: London, Birmingham and Manchester, is to learn from the latest advances in urban design in well-developed and prominent urban environment. The analysis of several high-rise sites reveals the weaknesses in urban design of contemporary British cities and presents an opportunity to study from the implemented examples. Therefore, the purpose of this research is to analyze design approaches towards creating a sustainable and varied urban environment when high-rises are involved. The research questions raised by the study are: what is the quality of high-rises and their surroundings; what facilities and features are deployed in the research area; what is the role of the high-rise buildings in the placemaking process; what urban design principles are applicable in this context. The methodology utilizes observation of the researched area by structured questions, developed by the author to evaluate the outdoor qualities of the high-rise surroundings. In this context, the paper argues that the quality of the public realm around the high-rises is quite low, missing basic but vital elements such as plazas, public art, and seating, along with landscaping and pocket parks. There is lack of coherence, the rhythm of the streets is often disrupted, and even though the high-rises are very aesthetically appealing, they fail to create a sense of place on their own. The implications of the study are that future planning can take into consideration the critique in this article and provide more opportunities for urban design interventions around high-rise buildings in the British cities.

Keywords: High-rises, placemaking, urban design, townscape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
5977 Fast High Voltage Solid State Switch Using Insulated Gate Bipolar Transistor for Discharge-Pumped Lasers

Authors: Nur Syarafina Binti Othman, Tsubasa Jindo, Makato Yamada, Miho Tsuyama, Hitoshi Nakano

Abstract:

A novel method to produce a fast high voltage solid states switch using Insulated Gate Bipolar Transistors (IGBTs) is presented for discharge-pumped gas lasers. The IGBTs are connected in series to achieve a high voltage rating. An avalanche transistor is used as the gate driver. The fast pulse generated by the avalanche transistor quickly charges the large input capacitance of the IGBT, resulting in a switch out of a fast high-voltage pulse. The switching characteristic of fast-high voltage solid state switch has been estimated in the multi-stage series-connected IGBT with the applied voltage of several tens of kV. Electrical circuit diagram and the mythology of fast-high voltage solid state switch as well as experimental results obtained are presented.

Keywords: High voltage, IGBT, Solid states switch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5868
5976 Simulation and Workspace Analysis of a Tripod Parallel Manipulator

Authors: A. Arockia Selvakumar, R. Sivaramakrishnan, Srinivasa Karthik.T.V, Valluri Siva Ramakrishna, B.Vinodh.

Abstract:

Industrial robots play a vital role in automation however only little effort are taken for the application of robots in machining work such as Grinding, Cutting, Milling, Drilling, Polishing etc. Robot parallel manipulators have high stiffness, rigidity and accuracy, which cannot be provided by conventional serial robot manipulators. The aim of this paper is to perform the modeling and the workspace analysis of a 3 DOF Parallel Manipulator (3 DOF PM). The 3 DOF PM was modeled and simulated using 'ADAMS'. The concept involved is based on the transformation of motion from a screw joint to a spherical joint through a connecting link. This paper work has been planned to model the Parallel Manipulator (PM) using screw joints for very accurate positioning. A workspace analysis has been done for the determination of work volume of the 3 DOF PM. The position of the spherical joints connected to the moving platform and the circumferential points of the moving platform were considered for finding the workspace. After the simulation, the position of the joints of the moving platform was noted with respect to simulation time and these points were given as input to the 'MATLAB' for getting the work envelope. Then 'AUTOCAD' is used for determining the work volume. The obtained values were compared with analytical approach by using Pappus-Guldinus Theorem. The analysis had been dealt by considering the parameters, link length and radius of the moving platform. From the results it is found that the radius of moving platform is directly proportional to the work volume for a constant link length and the link length is also directly proportional to the work volume, at a constant radius of the moving platform.

Keywords: Three Degrees of freedom Parallel Manipulator (3DOF PM), ADAMS, Work volume, MATLAB, AUTOCAD, Pappus- Guldinus Theorem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2955
5975 A Silicon Controlled Rectifier-Based ESD Protection Circuit with High Holding Voltage and High Robustness Characteristics

Authors: Kyoung-il Do, Byung-seok Lee, Hee-guk Chae, Jeong-yun Seo Yong-seo Koo

Abstract:

In this paper, a Silicon Controlled Rectifier (SCR)-based Electrostatic Discharge (ESD) protection circuit with high holding voltage and high robustness characteristics is proposed. Unlike conventional SCR, the proposed circuit has low trigger voltage and high holding voltage and provides effective ESD protection with latch-up immunity. In addition, the TCAD simulation results show that the proposed circuit has better electrical characteristics than the conventional SCR. A stack technology was used for voltage-specific applications. Consequentially, the proposed circuit has a trigger voltage of 17.60 V and a holding voltage of 3.64 V.

Keywords: ESD, SCR, latch-up, power clamp, holding voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 784
5974 Numerical Analysis of Pressure Admission Angle to Vane Angle Ratios on Performance of a Vaned Type Novel Air Turbine

Authors: B.R. Singh, O. Singh

Abstract:

Worldwide conventional resources of fossil fuel are depleting very fast due to large scale increase in use of transport vehicles every year, therefore consumption rate of oil in transport sector alone has gone very high. In view of this, the major thrust has now been laid upon the search of alternative energy source and also for cost effective energy conversion system. The air converted into compressed form by non conventional or conventional methods can be utilized as potential working fluid for producing shaft work in the air turbine and thus offering the capability of being a zero pollution energy source. This paper deals with the mathematical modeling and performance evaluation of a small capacity compressed air driven vaned type novel air turbine. Effect of expansion action and steady flow work in the air turbine at high admission air pressure of 6 bar, for varying injection to vane angles ratios 0.2-1.6, at the interval of 0.2 and at different vane angles such as 30o, 45o, 51.4o, 60o, 72o, 90o, and 120o for 12, 8, 7, 6, 5, 4 and 3 vanes respectively at speed of rotation 2500 rpm, has been quantified and analyzed here. Study shows that the expansion power has major contribution to total power, whereas the contribution of flow work output has been found varying only up to 19.4%. It is also concluded that for variation of injection to vane angle ratios from 0.2 to 1.2, the optimal power output is seen at vane angle 90o (4 vanes) and for 1.4 to 1.6 ratios, the optimal total power is observed at vane angle 72o (5 vanes). Thus in the vaned type novel air turbine the optimum shaft power output is developed when rotor contains 4-5 vanes for almost all situations of injection to vane angle ratios from 0.2 to 1.6.

Keywords: zero pollution, compressed air, air turbine, vaneangle, injection to vane angle ratios

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
5973 High Performance Direct Torque Control for Induction Motor Drive Fed from Photovoltaic System

Authors: E. E. El-Kholy, Ahamed Kalas, Mahmoud Fauzy, M. El-Shahat Dessouki, Abdou. M. El-Refay, Mohammed El-Zefery

Abstract:

Direct Torque Control (DTC) is an AC drive control method especially designed to provide fast and robust responses. In this paper a progressive algorithm for direct torque control of threephase induction drive system supplied by photovoltaic arrays using voltage source inverter to control motor torque and flux with maximum power point tracking at different level of insolation is presented. Experimental results of the new DTC method obtained by an experimental rapid prototype system for drives are presented. Simulation and experimental results confirm that the proposed system gives quick, robust torque and speed responses at constant switching frequencies.

Keywords: Photovoltaic (PV) array, direct torque control (DTC), constant switching frequency, induction motor, maximum power point tracking (MPPT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
5972 Mercury Removal Using Pseudomonas putida (ATTC 49128): Effect of Acclimatization Time, Speed and Temperature of Incubator Shaker

Authors: A. A. M. Azoddein, R. M. Yunus, N. M. Sulaiman, A. B. Bustary, K. Sabar

Abstract:

Microbes have been used to solve environmental problems for many years. The role of microorganism to sequester, precipitate or alter the oxidation state of various heavy metals has been extensively studied. Treatment using microorganism interacts with toxic metal are very diverse. The purpose of this research is to remove the mercury using Pseudomonas putida (P. putida), pure culture ATTC 49128 at optimum growth parameters such as techniques of culture, acclimatization time and speed of incubator shaker. Thus, in this study, the optimum growth parameters of P. putida were obtained to achieve the maximum of mercury removal. Based on the optimum parameters of P. putida for specific growth rate, the removal of two different mercury concentration, 1 ppm and 4 ppm were studied. From mercury nitrate solution, a mercuryresistant bacterial strain which is able to reduce from ionic mercury to metallic mercury was used to reduce ionic mercury. The overall levels of mercury removal in this study were between 80% and 89%. The information obtained in this study is of fundamental for understanding of the survival of P. putida ATTC 49128 in mercury solution. Thus, microbial mercury removal is a potential bioremediation for wastewater especially in petrochemical industries in Malaysia.

Keywords: Pseudomonas putida, growth kinetic, biosorption, mercury, petrochemical wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375
5971 A Low Voltage High Performance Self Cascode Current Mirror

Authors: Jasdeep Kaur, Nupur Prakash, S. S. Rajput

Abstract:

A current mirror (CM) based on self cascode MOSFETs low voltage analog and mixed mode structures has been proposed. The proposed CM has high output impedance and can operate at 0.5 V. P-Spice simulations confirm the high performance of this CM with a bandwidth of 6.0 GHz at input current of 100 μA.

Keywords: Current Mirrors, Composite Cascode Structure, Current Source/Sink

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4306
5970 Analysis on Urban Form and Evolution Mechanism of High-Density City: Case Study of Hong Kong

Authors: Yuan Zhang

Abstract:

Along with large population and great demands for urban development, Hong Kong serves as a typical high-density city with multiple altitudes, advanced three-dimensional traffic system, rich city open space, etc. This paper contributes to analyzing its complex urban form and evolution mechanism from three aspects of view, separately as time, space and buildings. Taking both horizontal and vertical dimension into consideration, this paper provides a perspective to explore the fascinating process of growing and space folding in the urban form of high-density city, also as a research reference for related high-density urban design.

Keywords: Evolution mechanism, high-density city, Hong Kong, urban form.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1166
5969 On-Line Impulse Buying and Cognitive Dissonance: The Moderating Role of the Positive Affective State

Authors: G. Mattia, A. Di Leo, L. Principato

Abstract:

The purchase impulsiveness is preceded by a lack of self-control: consequently, it is legitimate to believe that a consumer with a low level of self-control can result in a higher probability of cognitive dissonance. Moreover, the process of purchase is influenced by the pre-existing affective state in a considerable way. With reference to on-line purchases, digital behavior cannot be merely ascribed to the rational sphere, given the speed and ease of transactions and the hedonistic dimension of purchases. To our knowledge, this research is among the first cases of verification of the effect of moderation exerted by the positive affective state in the on-line impulse purchase of products with a high expressive value such as a smartphone on the occurrence of cognitive dissonance. To this aim, a moderation analysis was conducted on a sample of 212 impulsive millennials buyers. Three scales were adopted to measure the constructs of interest: IBTS for impulsivity, PANAS for the affective state, Sweeney for cognitive dissonance. The analysis revealed that positive affective state does not affect the onset of cognitive dissonance.

Keywords: Cognitive dissonance, impulsive buying, online shopping, online consumer behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
5968 Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control

Authors: L. Benaaouinate, M. Khafallah, A. Martinez, A. Mesbahi, T. Bouragba

Abstract:

This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance.

Keywords: Wind turbine, modeling, emulator, electrical generator, renewable energy, induction motor drive, field oriented control, real time control, wind turbine emulator, pitch angle control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
5967 An Optimization of Machine Parameters for Modified Horizontal Boring Tool Using Taguchi Method

Authors: Thirasak Panyaphirawat, Pairoj Sapsmarnwong, Teeratas Pornyungyuen

Abstract:

This paper presents the findings of an experimental investigation of important machining parameters for the horizontal boring tool modified to mouth with a horizontal lathe machine to bore an overlength workpiece. In order to verify a usability of a modified tool, design of experiment based on Taguchi method is performed. The parameters investigated are spindle speed, feed rate, depth of cut and length of workpiece. Taguchi L9 orthogonal array is selected for four factors three level parameters in order to minimize surface roughness (Ra and Rz) of S45C steel tubes. Signal to noise ratio analysis and analysis of variance (ANOVA) is performed to study an effect of said parameters and to optimize the machine setting for best surface finish. The controlled factors with most effect are depth of cut, spindle speed, length of workpiece, and feed rate in order. The confirmation test is performed to test the optimal setting obtained from Taguchi method and the result is satisfactory.

Keywords: Design of Experiment, Taguchi Design, Optimization, Analysis of Variance, Machining Parameters, Horizontal Boring Tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2677
5966 Numerical Study of Vortex Formation inside a Stirred Tank

Authors: Divya Rajavathsavai, Akhilesh Khapre, Basudeb Munshi

Abstract:

The computational fluid dynamics (CFD) study of stirred tank with the air-water interface are carried out in the presence of different types of the impeller and with or without baffles. A multiple reference frame (MRF) approach with the volume of fluid (VOF) method is used to capture the air-water interface. The RANS (Reynolds Averaged Navier-Stokes) equations with k-ε turbulence model are solved to predict the flow behavior of water and air phase which are treated as a different phases. The predicted results have shown that the VOF method is able to capture the interface in the unbaffled tank. While, the VOF method is showing an unfeasible results in the baffled tank with high rotational impeller speed. For continuous stirred tank, the air-water interface is disturbed by the inflow and the level of water is also increased with time.

Keywords: Computational Fluid Dynamics, stirred tank, airwater interface, multiple reference frame, volume of fluid, Reynolds Averaged Navier-Stokes equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4323
5965 Effect of Installation of Long Cylindrical External Store on Performance, Stability, Control and Handling Qualities of Light Transport Aircraft

Authors: Ambuj Srivastava, Narender Singh

Abstract:

This paper presents the effect of installation of cylindrical external store on the performance, stability, control and handling qualities of light transport category aircraft. A pair of long cylindrical store was installed symmetrically on either side of the fuselage (port and starboard) ahead of the wing and below the fuselage bottom surface running below pilot and co-pilot window. The cylindrical store was installed as hanging from aircraft surface through specially designed brackets. The adjoining structure was sufficiently reinforced for bearing aerodynamic loads. The length to diameter ratio of long cylindrical store was ~20. Based on academic studies and flow simulation analysis, a considerable detrimental effect on single engine second segment climb performance was found which was later validated through extensive flight testing exercise. The methodology of progressive flight envelope opening was adopted. The certification was sought from Regional airworthiness authorities and for according approval.

Keywords: Second segment climb, maximum operating speed, cruise performance, single engine and twin engine, minimum control speed, and additional trim required.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
5964 Multipurpose Three Dimensional Finite Element Procedure for Thermal Analysis in Pulsed Current Gas Tungsten Arc Welding of AZ 31B Magnesium Alloy Sheets

Authors: N.Karunakaran, V.Balasubramanian

Abstract:

This paper presents the results of a study aimed at establishing the temperature distribution during the welding of magnesium alloy sheets by Pulsed Current Gas Tungsten Arc Welding (PCGTAW) and Constant Current Gas Tungsten Arc Welding (CCGTAW) processes. Pulsing of the GTAW welding current influences the dimensions and solidification rate of the fused zone, it also reduces the weld pool volume hence a narrower bead. In this investigation, the base material considered was 2mm thin AZ 31 B magnesium alloy, which is finding use in aircraft, automobile and high-speed train components. A finite element analysis was carried out using ANSYS, and the results of the FEA were compared with the experimental results. It is evident from this study that the finite element analysis using ANSYS can be effectively used to model PCGTAW process for finding temperature distribution.

Keywords: gas tungsten arc welding, pulsed current, finiteelement analysis, thermal analysis, magnesium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
5963 Efficient Hardware Realization of Truncated Multipliers using FPGA

Authors: Muhammad H. Rais,

Abstract:

Truncated multiplier is a good candidate for digital signal processing (DSP) applications including finite impulse response (FIR) and discrete cosine transform (DCT). Through truncated multiplier a significant reduction in Field Programmable Gate Array (FPGA) resources can be achieved. This paper presents for the first time a comparison of resource utilization of Spartan-3AN and Virtex-5 implementation of standard and truncated multipliers using Very High Speed Integrated Circuit Hardware Description Language (VHDL). The Virtex-5 FPGA shows significant improvement as compared to Spartan-3AN FPGA device. The Virtex-5 FPGA device shows better performance with a percentage ratio of number of occupied slices for standard to truncated multipliers is increased from 40% to 73.86% as compared to Spartan- 3AN is decreased from 68.75% to 58.78%. Results show that the anomaly in Spartan-3AN FPGA device average connection and maximum pin delay have been efficiently reduced in Virtex-5 FPGA device.

Keywords: Digital Signal Processing (DSP), FieldProgrammable Gate Array (FPGA), Spartan-3AN, TruncatedMultiplier, Virtex-5, VHDL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525
5962 Multicasting Characteristics of All-Optical Triode Based On Negative Feedback Semiconductor Optical Amplifiers

Authors: S. Aisyah Azizan, M. Syafiq Azmi, Yuki Harada, Yoshinobu Maeda, Takaomi Matsutani

Abstract:

We introduced an all-optical multicasting characteristics with wavelength conversion based on a novel all-optical triode using negative feedback semiconductor optical amplifier. This study was demonstrated with a transfer speed of 10 Gb/s to a non-return zero 231-1 pseudorandom bit sequence system. This multi-wavelength converter device can simultaneously provide three channels of output signal with the support of non-inverted and inverted conversion. We studied that an all-optical multicasting and wavelength conversion accomplishing cross gain modulation is effective in a semiconductor optical amplifier which is effective to provide an inverted conversion thus negative feedback. The relationship of received power of back to back signal and output signals with wavelength 1535 nm, 1540 nm, 1545 nm, 1550 nm, and 1555 nm with bit error rate was investigated. It was reported that the output signal wavelengths were successfully converted and modulated with a power penalty of less than 8.7 dB, which the highest is 8.6 dB while the lowest is 4.4 dB. It was proved that all-optical multicasting and wavelength conversion using an optical triode with a negative feedback by three channels at the same time at a speed of 10 Gb/s is a promising device for the new wavelength conversion technology.

Keywords: Cross gain modulation, multicasting, negative feedback optical amplifier, semiconductor optical amplifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
5961 Programmable Logic Controller for Cassava Centrifugal Machine

Authors: R. Oonsivilai, M. Oonsivilai, J. Sanguemrum, N. Thumsirirat, A. Oonsivilai

Abstract:

Chaiyaphum Starch Co. Ltd. is one of many starch manufacturers that has introduced machinery to aid in manufacturing. Even though machinery has replaced many elements and is now a significant part in manufacturing processes, problems that must be solved with respect to current process flow to increase efficiency still exist. The paper-s aim is to increase productivity while maintaining desired quality of starch, by redesigning the flipping machine-s mechanical control system which has grossly low functional lifetime. Such problems stem from the mechanical control system-s bearings, as fluids and humidity can access into said bearing directly, in tandem with vibrations from the machine-s function itself. The wheel which is used to sense starch thickness occasionally falls from its shaft, due to high speed rotation during operation, while the shaft may bend from impact when processing dried bread. Redesigning its mechanical control system has increased its efficiency, allowing quality thickness measurement while increasing functional lifetime an additional 62 days.

Keywords: Control system, Machinery, Measurement, Potato starch

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
5960 Detection of Max. Optical Gain by Erbium Doped Fiber Amplifier

Authors: Abdulamgid.T. Bouzed, Suleiman. M. Elhamali

Abstract:

The technical realization of data transmission using glass fiber began after the development of diode laser in year 1962. The erbium doped fiber amplifiers (EDFA's) in high speed networks allow information to be transmitted over longer distances without using of signal amplification repeaters. These kinds of fibers are doped with erbium atoms which have energy levels in its atomic structure for amplifying light at 1550nm. When a carried signal wave at 1550nm enters the erbium fiber, the light stimulates the excited erbium atoms which pumped with laser beam at 980nm as additional light. The wavelength and intensity of the semiconductor lasers depend on the temperature of active zone and the injection current. The present paper shows the effect of the diode lasers temperature and injection current on the optical amplification. From the results of in- and output power one may calculate the max. optical gain by erbium doped fiber amplifier.

Keywords: Amplifier, erbium doped fiber, gain, lasers, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
5959 Modelling of a Biomechanical Vertebral System for Seat Ejection in Aircrafts Using Lumped Mass Approach

Authors: R. Unnikrishnan, K. Shankar

Abstract:

In the case of high-speed fighter aircrafts, seat ejection is designed mainly for the safety of the pilot in case of an emergency. Strong windblast due to the high velocity of flight is one main difficulty in clearing the tail of the aircraft. Excessive G-forces generated, immobilizes the pilot from escape. In most of the cases, seats are ejected out of the aircrafts by explosives or by rocket motors attached to the bottom of the seat. Ejection forces are primarily in the vertical direction with the objective of attaining the maximum possible velocity in a specified period of time. The safe ejection parameters are studied to estimate the critical time of ejection for various geometries and velocities of flight. An equivalent analytical 2-dimensional biomechanical model of the human spine has been modelled consisting of vertebrae and intervertebral discs with a lumped mass approach. The 24 vertebrae, which consists of the cervical, thoracic and lumbar regions, in addition to the head mass and the pelvis has been designed as 26 rigid structures and the intervertebral discs are assumed as 25 flexible joint structures. The rigid structures are modelled as mass elements and the flexible joints as spring and damper elements. Here, the motions are restricted only in the mid-sagittal plane to form a 26 degree of freedom system. The equations of motions are derived for translational movement of the spinal column. An ejection force with a linearly increasing acceleration profile is applied as vertical base excitation on to the pelvis. The dynamic vibrational response of each vertebra in time-domain is estimated.

Keywords: Biomechanical model, lumped mass, seat ejection, vibrational response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
5958 A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance

Authors: F. Meskine, N. Taleb, M. Chikr El-Mezouar, K. Kpalma, A. Almhdie

Abstract:

Image registration is the process of establishing point by point correspondence between images obtained from a same scene. This process is very useful in remote sensing, medicine, cartography, computer vision, etc. Then, the task of registration is to place the data into a common reference frame by estimating the transformations between the data sets. In this work, we develop a rigid point registration method based on the application of genetic algorithms and Hausdorff distance. First, we extract the feature points from both images based on the algorithm of global and local curvature corner. After refining the feature points, we use Hausdorff distance as similarity measure between the two data sets and for optimizing the search space we use genetic algorithms to achieve high computation speed for its inertial parallel. The results show the efficiency of this method for registration of satellite images.

Keywords: Feature extraction, Genetic algorithms, Hausdorff distance, Image registration, Point registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
5957 Spread Spectrum Code Estimationby Particle Swarm Algorithm

Authors: Vahid R. Asghari, Mehrdad Ardebilipour

Abstract:

In the context of spectrum surveillance, a new method to recover the code of spread spectrum signal is presented, while the receiver has no knowledge of the transmitter-s spreading sequence. In our previous paper, we used Genetic algorithm (GA), to recover spreading code. Although genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems, but nonetheless, by increasing the length of the code, we will often lead to an unacceptable slow convergence speed. To solve this problem we introduce Particle Swarm Optimization (PSO) into code estimation in spread spectrum communication system. In searching process for code estimation, the PSO algorithm has the merits of rapid convergence to the global optimum, without being trapped in local suboptimum, and good robustness to noise. In this paper we describe how to implement PSO as a component of a searching algorithm in code estimation. Swarm intelligence boasts a number of advantages due to the use of mobile agents. Some of them are: Scalability, Fault tolerance, Adaptation, Speed, Modularity, Autonomy, and Parallelism. These properties make swarm intelligence very attractive for spread spectrum code estimation. They also make swarm intelligence suitable for a variety of other kinds of channels. Our results compare between swarm-based algorithms and Genetic algorithms, and also show PSO algorithm performance in code estimation process.

Keywords: Code estimation, Particle Swarm Optimization(PSO), Spread spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
5956 ESS Control Strategy for Primary Frequency Response in Microgrid Considering Ramp Rate

Authors: Ho-Jun Jo, Wook-Won Kim, Yong-Sung Kim, Jin-O Kim

Abstract:

The application of ESS (Energy Storage Systems) in the future grids has been the solution of the microgrid. However, high investment costs necessitate accurate modeling and control strategy of ESS to justify its economic viability and further underutilization. Therefore, the reasonable control strategy for ESS which is subjected to generator and usage helps to curtail the cost of investment and operation costs. The rated frequency in power system is decreased when the load is increasing unexpectedly; hence the thermal power is operated at the capacity of only its 95% for the Governor Free (GF) to adjust the frequency as reserve (5%) in practice. The ESS can be utilized with governor at the same time for the frequency response due to characteristic of its fast response speed and moreover, the cost of ESS is declined rapidly to the reasonable price. This paper presents the ESS control strategy to extend usage of the ESS taken account into governor’s ramp rate and reduce the governor’s intervention as well. All results in this paper are simulated by MATLAB.

Keywords: Micro grid, energy storage systems, ramp rate, control strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2427
5955 Measurement and Analysis of Temperature Effects on Box Girders of Continuous Rigid Frame Bridges

Authors: Bugao Wang, Weifeng Wang, Xianwei Zeng

Abstract:

Researches on the general rules of temperature field changing and their effects on the bridge in construction are necessary. This paper investigated the rules of temperature field changing and its effects on bridge using onsite measurement and computational analysis. Guanyinsha Bridge was used as a case study in this research. The temperature field was simulated in analyses. The effects of certain boundary conditions such as sun radiance, wind speed, and model parameters such as heat factor and specific heat on temperature field are investigated. Recommended values for these parameters are proposed. The simulated temperature field matches the measured observations with high accuracy. At the same time, the stresses and deflections of the bridge computed with the simulated temperature field matches measured values too. As a conclusion, the temperature effect analysis of reinforced concrete box girder can be conducted directly based on the reliable weather data of the concerned area.

Keywords: continuous rigid frame bridge, temperature effectanalysis, temperature field, temperature field simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2526
5954 Test of Moisture Sensor Activation Speed

Authors: I. Parkova, A. Vališevskis, A. Viļumsone

Abstract:

Nocturnal enuresis or bed-wetting is intermittent incontinence during sleep of children after age 5 that may precipitate wide range of behavioral and developmental problems. One of the non-pharmacological treatment methods is the use of a bed-wetting alarm system. In order to improve comfort conditions of nocturnal enuresis alarm system, modular moisture sensor should be replaced by a textile sensor. In this study behavior and moisture detection speed of woven and sewn sensors were compared by analyzing change in electrical resistance after solution (salt water) was dripped on sensor samples. Material of samples has different structure and yarn location, which affects solution detection rate. Sensor system circuit was designed and two sensor tests were performed: system activation test and false alarm test to determine the sensitivity of the system and activation threshold. Sewn sensor had better result in system’s activation test – faster reaction, but woven sensor had better result in system’s false alarm test – it was less sensitive to perspiration simulation. After experiments it was found that the optimum switching threshold is 3V in case of 5V input voltage, which provides protection against false alarms, for example – during intensive sweating.

Keywords: Conductive yarns, moisture textile sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301