Spread Spectrum Code Estimationby Particle Swarm Algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33087
Spread Spectrum Code Estimationby Particle Swarm Algorithm

Authors: Vahid R. Asghari, Mehrdad Ardebilipour

Abstract:

In the context of spectrum surveillance, a new method to recover the code of spread spectrum signal is presented, while the receiver has no knowledge of the transmitter-s spreading sequence. In our previous paper, we used Genetic algorithm (GA), to recover spreading code. Although genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems, but nonetheless, by increasing the length of the code, we will often lead to an unacceptable slow convergence speed. To solve this problem we introduce Particle Swarm Optimization (PSO) into code estimation in spread spectrum communication system. In searching process for code estimation, the PSO algorithm has the merits of rapid convergence to the global optimum, without being trapped in local suboptimum, and good robustness to noise. In this paper we describe how to implement PSO as a component of a searching algorithm in code estimation. Swarm intelligence boasts a number of advantages due to the use of mobile agents. Some of them are: Scalability, Fault tolerance, Adaptation, Speed, Modularity, Autonomy, and Parallelism. These properties make swarm intelligence very attractive for spread spectrum code estimation. They also make swarm intelligence suitable for a variety of other kinds of channels. Our results compare between swarm-based algorithms and Genetic algorithms, and also show PSO algorithm performance in code estimation process.

Keywords: Code estimation, Particle Swarm Optimization(PSO), Spread spectrum.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1079008

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134

References:


[1] D. Thomas Magill, Francis D. Natali, Gwyn P. Edwards, "Spread Spectrum Technology for Commercial Applications," Proceeding of the IEEE, vol. 82, pp. 572-584, April. 1994.
[2] Raymond. L. Picholtz, Doland L. Schilling, Laurence B. Milstein, "Theory of Spread Spectrum Communications - A Tutorial," IEEE Transactions on Communications, vol. COM-30, pp. 855-884, May. 1982.
[3] John G. Proakis, Digital communication, Third Edition, Mac Graw Hill International Editions, 1995.
[4] V. R. Asghari and M. Ardebilipour, "Spread Spectrum Code Estimation by Genetic Algorithms," International Journal on Signal Processing, vol. 1, pp. 301-304, Dec. 2004.
[5] Dilip V. Sarwate, Michael B. Pursley, "Crosscorrelation Properties of Pseudo-random and Related Sequences," Proceeding of the IEEE, vol. 68, pp. 593-619, May. 1980.
[6] Michail K. Tsatsanis, Georgios B. Giannakis, "Blind Estimation of Direct Sequence Spread Spectrum Signals in Multipath," IEEE Transactions on Signal Processing, vol. 45, pp. 1241-1252, May. 1997.
[7] T. Baeck, "Generalized convergence models for tournament and (mu,lambda)-selection," Proc. of the Sixth International Conf. on Genetic Algorithms, pp. 2-7, Morgan Kaufmann Publishers, San Francisco, CA, 1995.
[8] M. Potter, K. De Jong, and J. Grefenstette, "A coevolutionary approach to learning sequential decision rules," Proc. of the Sixth International Conf. on Genetic Algorithms, pp. 366-372, Morgan Kaufmann Publishers, San Francisco, CA, 1995.
[9] R. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory," Proc. 6th Int. Symp. Micro Machine Human Sci., pp. 39-43, 1995.
[10] J. Kennedy and R. C. Eberhart, "Particle Swarm Optimization," Proc. IEEE Int. Conf. Neural Networks, Piscataway, NJ, pp. 1942-1948, 1995.
[11] E. C. Laskari, K. E. Parsopoulos, and M. N. Vrahatis, "Particle swarm optimization for minimax problems," Proc. 2002 Congress Evolutionary Computation, vol. 2, pp. 1576-1581, 2002.
[12] J. Kennedy and R. Mendes, "Population structure and particle swarm performance," Proc. 2002 Congress Evolutionary Computation, vol. 2, pp. 1671-1676, 2002.