Search results for: Elastic scattering of protons on 10B nuclei
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 542

Search results for: Elastic scattering of protons on 10B nuclei

332 The Cytotoxic Effect of PM 701 and its Fractions on Cell Proliferation of Breast Cancer Cells, McF7

Authors: Faten A. Khorshid

Abstract:

Breast cancer is the most common malignancy in the world among women. Many therapies have been designed to treat this disease. Mamectomy, chemotherapy and radiotherapy are still the main therapies of breast cancer. However, the results were unsatisfactory and still far from the ideal treatment. PM 701is a natural product, has anticancer activity. The bioactive fraction PMF and subfraction PMFK had been isolated from PM701. PM 701 and its fractions were proved to have a cytotoxic properties against different cancer cell lines. This article is directed for the further examination of lyophilized PM701 and its active fractions on the growth of breast cancer cells (MCF-7). PM 701, PMF or PMFK were adding to the cultural medium, where MCF-7 is incubated. PM 701, PMF or PMFK were able to inhibit significantly the proliferation of MCF-7 cells, Moreover these new agents were proved to induce apoptosis of the breast cancer cells; through its direct effect on the nuclei.

Keywords: Anticancer agent, breast carcinoma, MCF-7 cell line, PM 701

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
331 Synthesis, Characterization and Antibacterial Screening of 3-Hydroxy-2-[3-(2/3/4-Methoxybenzoyl)Thioureido]Butyric Acid

Authors: M. S. M. Yusof, R. Ramli, S. K. C. Soh, N. Ismail, N. Ngah

Abstract:

This study presents the synthesis of a series of methoxybenzoylthiourea amino acid derivatives. The compounds were obtained from the reactions between 2/3/4-methoxybenzoyl isothiocyanate with threonine. All of the compounds were characterized via mass spectrometry, 1H and 13C NMR spectrometry, UV-Vis spectrophotometer and FT-IR spectroscopy. Mass spectra for all of the compounds showed the presence of molecular ion [M]+ peaks at m/z 312, which are in agreement to the calculated molecular weight. For 1H NMR spectra, the presence of OCH3, C=S-NH and C=O-NH protons were observed within range of δH 3.8-4.0 ppm, 11.1-11.5 ppm and 10.0-11.5 ppm, respectively. 13C NMR spectra in all compounds displayed the presence of OCH3, C=O-NH, C=O-OH and C=S carbon resonances within range of δC 55.0-57.0 ppm, 165.0-168.0 ppm, 170.0-171.0 ppm and 180.0-182.0 ppm, respectively. In UV spectra, two absorption bands have been observed and both were assigned to the n-π* and π-π* transitions. Six vibrational modes of v(N-H), v(O-H), v(C=O-OH), v(C=O-NH), v(C=C) aromatic and v(C=S) appeared in the FT-IR spectra within the range of 3241-3467 cm-1, 2976-3302 cm-1, 1720-1768 cm-1, 1655-1672 cm-1, 1519-1525 cm-1 and 754-763 cm-1, respectively. The antibacterial activity for all of the compounds was screened against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium and Escherichia coli. However, no activity was observed.

Keywords: Methoxybenzoyl isothiocyanate, amino acid, threonine, antibacterial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 840
330 Synthesis and Characterization of Gallosilicate Sodalite Containing NO2- Ions

Authors: Ashok V. Borhade, Sanjay G. Wakchaure

Abstract:

Pure phase gallosilicate nitrite sodalite has been synthesized in a single step by low temperature (373 oK) hydrothermal technique. The product obtained was characterized using a combination of techniques including X-ray powder diffraction, IR, Raman spectroscopy, SEM, MAS NMR spectroscopy as well as thermogravimetry. Sodalite with an ideal composition was obtained after synthesis at 3730K and seven days duration using alkaline medium. The structural features of the Na8[GaSiO4]6(NO2)2 sodalite were investigated by IR, MAS NMR spectroscopy of 29Si and 23Na nuclei and by Reitveld refinement of X-ray powder diffraction data. The crystal structure of this sodalite has been refined in the space group P 4 3n; with a cell parameter 8.98386Å, V= 726.9 Å, (Rwp= 0.077 and Rp=0.0537) and Si-O-Ga angle is found to be 132.920 . MAS NMR study confirms complete ordering of Si and Ga in the gallosilicate framework. The surface area of single entity with stoichiometry Na8[GaSiO4]6(NO2)2 was found to be 8.083 x10-15 cm2/g.

Keywords: Gallosilicate, hydrothermal, nitrite, Reitveldrefinement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
329 Microstructure Parameters of a Super-Ionic Sample (Csag2i3)

Authors: Samir Osman M., Mohammed Hassan S.

Abstract:

Sample of CsAg2I3 was prepared by solid state reaction. Then, microstructure parameters of this sample have been determined using wide angle X-ray scattering WAXS method. As well as, Cell parameters of crystal structure have been refined using CHEKCELL program. This analysis states that the lattice intrinsic strainof the sample is so small and the crystal size is on the order of 559Å.

Keywords: WAXS, Microstructure parameters, super-ionic conductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
328 Light Harvesting Titanium Nanocatalyst for Remediation of Methyl Orange

Authors: Brajesh Kumar, Luis Cumbal

Abstract:

An ecofriendly Citrus paradisipeel extract mediated synthesis of TiO2 nanoparticles is reported under sonication. U.V.-vis, Transmission electron microscopy, Dynamic light scattering, and X-ray analyses are performed to characterize the formation of TiO2 nanoparticles. It is almost spherical in shape, having a size of 60–140 nm and the XRD peaks at 2θ = 25.363° confirm the characteristic facets for anatase form. The synthesized nanocatalyst is highly active in the decomposition of methyl orange (64 mg/L) in sunlight (~73%) for 2.5h.

Keywords: Ecofriendly, TiO2 nanoparticles, Citrusparadisi, TEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2763
327 Finite Element Modelling of a 3D Woven Composite for Automotive Applications

Authors: Ahmad R. Zamani, Luigi Sanguigno, Angelo R. Maligno

Abstract:

A 3D woven composite, designed for automotive applications, is studied using Abaqus Finite Element (FE) software suite. Python scripts were developed to build FE models of the woven composite in Complete Abaqus Environment (CAE). They can read TexGen or WiseTex files and automatically generate consistent meshes of the fabric and the matrix. A user menu is provided to help define parameters for the FE models, such as type and size of the elements in fabric and matrix as well as the type of matrix-fabric interaction. Node-to-node constraints were imposed to guarantee periodicity of the deformed shapes at the boundaries of the representative volume element of the composite. Tensile loads in three axes and biaxial loads in x-y directions have been applied at different Fibre Volume Fractions (FVFs). A simple damage model was implemented via an Abaqus user material (UMAT) subroutine. Existing tools for homogenization were also used, including voxel mesh generation from TexGen as well as Abaqus Micromechanics plugin. Linear relations between homogenised elastic properties and the FVFs are given. The FE models of composite exhibited balanced behaviour with respect to warp and weft directions in terms of both stiffness and strength.

Keywords: 3D woven composite, meso-scale finite element modelling, homogenisation of elastic material properties, Abaqus Python scripting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 848
326 Effect of Crude Oil Particle Elasticity on the Separation Efficiency of a Hydrocyclone

Authors: M. H. Narasingha, K. Pana-Suppamassadu, P. Narataruksa

Abstract:

The separation efficiency of a hydrocyclone has extensively been considered on the rigid particle assumption. A collection of experimental studies have demonstrated their discrepancies from the modeling and simulation results. These discrepancies caused by the actual particle elasticity have generally led to a larger amount of energy consumption in the separation process. In this paper, the influence of particle elasticity on the separation efficiency of a hydrocyclone system was investigated through the Finite Element (FE) simulations using crude oil droplets as the elastic particles. A Reitema-s design hydrocyclone with a diameter of 8 mm was employed to investigate the separation mechanism of the crude oil droplets from water. The cut-size diameter eter of the crude oil was 10 - Ðçm in order to fit with the operating range of the adopted hydrocylone model. Typical parameters influencing the performance of hydrocyclone were varied with the feed pressure in the range of 0.3 - 0.6 MPa and feed concentration between 0.05 – 0.1 w%. In the simulation, the Finite Element scheme was applied to investigate the particle-flow interaction occurred in the crude oil system during the process. The interaction of a single oil droplet at the size of 10 - Ðçm to the flow field was observed. The feed concentration fell in the dilute flow regime so the particle-particle interaction was ignored in the study. The results exhibited the higher power requirement for the separation of the elastic particulate system when compared with the rigid particulate system.

Keywords: Hydrocyclone, separation efficiency, strain energy density, strain rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
325 Mechanical Properties of Enset Fibers Obtained from Different Breeds of Enset Plant

Authors: Diriba T. Balcha, Boris Kulig, Oliver Hensel, Eyassu Woldesenbet

Abstract:

Enset fiber is agricultural waste and available in a surplus amount in Ethiopia. However, the hypothesized variation in properties of this fiber due to diversity of its plant source breed, fiber position within plant stem and chemical treatment duration had not proven that its application for the development of composite products is problematic. Currently, limited data are known on the functional properties of the fiber as a potential functional fiber. Thus, an effort is made in this study to narrow the knowledge gaps by characterizing it. The experimental design was conducted using Design-Expert software and the tensile test was conducted on Enset fiber from 10 breeds: Dego, Dirbo, Gishera, Itine, Siskela, Neciho, Yesherkinke, Tuzuma, Ankogena, and Kucharkia. The effects of 5% Na-OH surface treatment duration and fiber location along and across the plant pseudostem was also investigated. The test result shows that the rupture stress variation is not significant among the fibers from 10 Enset breeds. However, strain variation is significant among the fibers from 10 Enset breeds that breed Dego fiber has the highest strain before failure. Surface treated fibers showed improved rupture strength and elastic modulus per 24 hours of treatment duration. Also, the result showed that chemical treatment can deteriorate the load-bearing capacity of the fiber. The raw fiber has the higher load-bearing capacity than the treated fiber. And, it was noted that both the rupture stress and strain increase in the top to bottom gradient, whereas there is no significant variation across the stem. Elastic modulus variation both along and across the stem was insignificant. The rupture stress, elastic modulus, and strain result of Enset fiber are 360.11 ± 181.86 MPa, 12.80 ± 6.85 GPa and 0.04 ± 0.02 mm/mm, respectively. These results show that Enset fiber is comparable to other natural fibers such as abaca, banana, and sisal fibers and can be used as alternatives natural fiber for composites application. Besides, the insignificant variation of properties among breeds and across stem is essential for all breeds and all leaf sheath of the Enset fiber plant for fiber extraction. The use of short natural fiber over the long is preferable to reduce the significant variation of properties along the stem or fiber direction. In conclusion, Enset fiber application for composite product design and development is mechanically feasible.

Keywords: Agricultural waste, chemical treatment, fiber characteristics, natural fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663
324 Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application

Authors: Maruf Yinka Kolawole, Jacob Olayiwola Aweda, Farasat Iqbal, Asif Ali, Sulaiman Abdulkareem

Abstract:

Zinc is a non-ferrous metal with potential application in orthopaedic implant materials. However, its poor mechanical properties were major challenge to its application. Therefore, this paper studies the mechanical properties of biodegradable Zn-based alloy for biomedical application. Pure zinc powder with varying (0, 1, 2, 3 & 6) wt% of magnesium powders were ball milled using ball-to-powder ratio (B:P) of 10:1 at 350 rpm for 4 hours. The resulting milled powders were compacted and sintered at 300 MPa and 350 °C respectively. Microstructural, phase and mechanical properties analyses were performed following American standard of testing and measurement. The results show that magnesium has influence on the mechanical properties of zinc. The compressive strength, hardness and elastic modulus of 210 ± 8.878 MPa, 76 ± 5.707 HV and 45 ± 11.616 GPa respectively as obtained in Zn-2Mg alloy were optimum and meet the minimum requirement of biodegradable metal for orthopaedics application. These results indicate an increase of 111, 93 and 93% in compressive strength, hardness and elastic modulus respectively as compared to pure zinc. The increase in mechanical properties was adduced to effectiveness of compaction pressure and intermetallic phase formation within the matrix resulting in high dislocation density for improving strength. The study concluded that, Zn-2Mg alloy with optimum mechanical properties can therefore be considered a potential candidate for orthopaedic application.

Keywords: Biodegradable metal, biomedical application mechanical properties, powder metallurgy, zinc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
323 Effect of Shell Dimensions on Buckling Behavior and Entropy Generation of Thin Welded Shells

Authors: Sima Ziaee, Khosro Jafarpur

Abstract:

Among all mechanical joining processes, welding has been employed for its advantage in design flexibility, cost saving, reduced overall weight and enhanced structural performance. However, for structures made of relatively thin components, welding can introduce significant buckling distortion which causes loss of dimensional control, structural integrity and increased fabrication costs. Different parameters can affect buckling behavior of welded thin structures such as, heat input, welding sequence, dimension of structure. In this work, a 3-D thermo elastic-viscoplastic finite element analysis technique is applied to evaluate the effect of shell dimensions on buckling behavior and entropy generation of welded thin shells. Also, in the present work, the approximated longitudinal transient stresses which produced in each time step, is applied to the 3D-eigenvalue analysis to ratify predicted buckling time and corresponding eigenmode. Besides, the possibility of buckling prediction by entropy generation at each time is investigated and it is found that one can predict time of buckling with drawing entropy generation versus out of plane deformation. The results of finite element analysis show that the length, span and thickness of welded thin shells affect the number of local buckling, mode shape of global buckling and post-buckling behavior of welded thin shells.

Keywords: Buckling behavior, Elastic viscoplastic model, Entropy generation, Finite element method, Shell dimensions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
322 Inferring the Dynamics of “Hidden“ Neurons from Electrophysiological Recordings

Authors: Valeri A. Makarov, Nazareth P. Castellanos

Abstract:

Statistical analysis of electrophysiological recordings obtained under, e.g. tactile, stimulation frequently suggests participation in the network dynamics of experimentally unobserved “hidden" neurons. Such interneurons making synapses to experimentally recorded neurons may strongly alter their dynamical responses to the stimuli. We propose a mathematical method that formalizes this possibility and provides an algorithm for inferring on the presence and dynamics of hidden neurons based on fitting of the experimental data to spike trains generated by the network model. The model makes use of Integrate and Fire neurons “chemically" coupled through exponentially decaying synaptic currents. We test the method on simulated data and also provide an example of its application to the experimental recording from the Dorsal Column Nuclei neurons of the rat under tactile stimulation of a hind limb.

Keywords: Integrate and fire neuron, neural network models, spike trains.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
321 Detection of Temporal Change of Fishery and Island Activities by DNB and SAR on the South China Sea

Authors: I. Asanuma, T. Yamaguchi, J. Park, K. J. Mackin

Abstract:

Fishery lights on the surface could be detected by the Day and Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi-NPP). The DNB covers the spectral range of 500 to 900 nm and realized a higher sensitivity. The DNB has a difficulty of identification of fishing lights from lunar lights reflected by clouds, which affects observations for the half of the month. Fishery lights and lights of the surface are identified from lunar lights reflected by clouds by a method using the DNB and the infrared band, where the detection limits are defined as a function of the brightness temperature with a difference from the maximum temperature for each level of DNB radiance and with the contrast of DNB radiance against the background radiance. Fishery boats or structures on islands could be detected by the Synthetic Aperture Radar (SAR) on the polar orbit satellites using the reflected microwave by the surface reflecting targets. The SAR has a difficulty of tradeoff between spatial resolution and coverage while detecting the small targets like fishery boats. A distribution of fishery boats and island activities were detected by the scan-SAR narrow mode of Radarsat-2, which covers 300 km by 300 km with various combinations of polarizations. The fishing boats were detected as a single pixel of highly scattering targets with the scan-SAR narrow mode of which spatial resolution is 30 m. As the look angle dependent scattering signals exhibits the significant differences, the standard deviations of scattered signals for each look angles were taken into account as a threshold to identify the signal from fishing boats and structures on the island from background noise. It was difficult to validate the detected targets by DNB with SAR data because of time lag of observations for 6 hours between midnight by DNB and morning or evening by SAR. The temporal changes of island activities were detected as a change of mean intensity of DNB for circular area for a certain scale of activities. The increase of DNB mean intensity was corresponding to the beginning of dredging and the change of intensity indicated the ending of reclamation and following constructions of facilities.

Keywords: Day night band, fishery, SAR, South China Sea.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1050
320 The Emerging Central Business District (CBD) in Lafia Town, Nigeria, and its Related Urban Planning Problems

Authors: Barau Daniel, Bashayi Obadiah

Abstract:

A spatial analysis of a large 20th century urban settlement (town/city) easily presents the celebrated central Business District (CBD). Theories of Urban Land Economics have easily justified and attempted to explain the existence of such a district activity area within the cityscape. This work examines the gradual emergence and development of the CBD in Lafia Town, Nigeria over 20 years and the attended urban problems caused by its emergence. Personal knowledge and observation of land use change are the main sources of data for the work, with unstructured interview with residents. The result are that the absence of a co-ordinate land use plan for the town, multi-nuclei nature, and regional location of surrounding towns have affected the growth pattern, hence the CBD. Traffic congestion, dispersed CBD land uses are some of the urban planning problems. The work concludes by advocating for integrating CBD uses.

Keywords: Urban planning, Central Business District (CBD), downtown.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4014
319 Studying the Temperature Field of Hypersonic Vehicle Structure with Aero-Thermo-Elasticity Deformation

Authors: Geng Xiangren, Liu Lei, Gui Ye-Wei, Tang Wei, Wang An-ling

Abstract:

The malfunction of thermal protection system (TPS) caused by aerodynamic heating is a latent trouble to aircraft structure safety. Accurately predicting the structure temperature field is quite important for the TPS design of hypersonic vehicle. Since Thornton’s work in 1988, the coupled method of aerodynamic heating and heat transfer has developed rapidly. However, little attention has been paid to the influence of structural deformation on aerodynamic heating and structural temperature field. In the flight, especially the long-endurance flight, the structural deformation, caused by the aerodynamic heating and temperature rise, has a direct impact on the aerodynamic heating and structural temperature field. Thus, the coupled interaction cannot be neglected. In this paper, based on the method of static aero-thermo-elasticity, considering the influence of aero-thermo-elasticity deformation, the aerodynamic heating and heat transfer coupled results of hypersonic vehicle wing model were calculated. The results show that, for the low-curvature region, such as fuselage or center-section wing, structure deformation has little effect on temperature field. However, for the stagnation region with high curvature, the coupled effect is not negligible. Thus, it is quite important for the structure temperature prediction to take into account the effect of elastic deformation. This work has laid a solid foundation for improving the prediction accuracy of the temperature distribution of aircraft structures and the evaluation capacity of structural performance.

Keywords: Aero-thermo-elasticity, elastic deformation, structural temperature, multi-field coupling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858
318 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.

Keywords: Base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 991
317 Influences of Si and C- Doping on the Al-27 and N-14 Quardrupole Coupling Constants in AlN Nanotubes: A DFT Study

Authors: A.Seif, H.Aghaie, K.Majlesi

Abstract:

A computational study at the level density functional theory (DFT) was carried out to investigate the influences of Si and C-doping on the 14N and 27Al quadrupole coupling constant in the (10, 0) zigzag single ? walled Aluminum-Nitride nanotube (AlNNT). To this aim, a 1.16nm, length of AlNNT consisting of 40 Al atoms and 40 N atoms were selected where the end atoms are capped by hydrogen atom. To follow the purpose, three Si atoms and three C atoms were doped instead of three Al atoms and three N atoms as a central ring in the surface of the Si and C-doped AlNNT. At first both of systems optimized at the level of BLYP method and 6-31G (d) basis set and after that, the NQR parameters were calculated at the level BLYP method and 6-311+G** basis set in two optimized forms. The calculate CQ values for both optimized AlNNT systems, raw and Si and C-doped, reveal different electronic environments in the mentioned systems. It was also demonstrated that the end nuclei have the largest CQ values in both considered AlNNT systems. All the calculations were carried out using Gaussian 98 package of program.

Keywords: DFT, Quadrupole Coupling Constant, Si and CDoping, Single-Walled AlN nanotubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
316 Dominant Correlation Effects in Atomic Spectra

Authors: Hubert Klar

Abstract:

High double excitation of two-electron atoms has been investigated using hyperpherical coordinates within a modified adiabatic expansion technique. This modification creates a novel fictitious force leading to a spontaneous exchange symmetry breaking at high double excitation. The Pauli principle must therefore be regarded as approximation valid only at low excitation energy. Threshold electron scattering from high Rydberg states shows an unexpected time reversal symmetry breaking. At threshold for double escape we discover a broad (few eV) Cooper pair.

Keywords: Correlation, resonances, threshold ionization, Cooper pair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
315 Predictions of Dynamic Behaviors for Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

A simulation scheme of rotational motions for predictions of bump-type gas foil bearings operating at steady-state is proposed. The scheme is based on multi-physics coupling computer aided engineering packages modularized with computational fluid dynamic model and structure elasticity model to numerically solve the dynamic equation of motions of a hydrodynamic loaded shaft supported by an elastic bump foil. The bump foil is assumed to be modelled as infinite number of Hookean springs mounted on stiff wall. Hence, the top foil stiffness is constant on the periphery of the bearing housing. The hydrodynamic pressure generated by the air film lubrication transfers to the top foil and induces elastic deformation needed to be solved by a finite element method program, whereas the pressure profile applied on the top foil must be solved by a finite element method program based on Reynolds Equation in lubrication theory. As a result, the equation of motions for the bearing shaft are iteratively solved via coupling of the two finite element method programs simultaneously. In conclusion, the two-dimensional center trajectory of the shaft plus the deformation map on top foil at constant rotational speed are calculated for comparisons with the experimental results.

Keywords: Computational fluid dynamics, fluid structure interaction multi-physics simulations, gas foil bearing, load capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 506
314 Construction and Validation of a Hybrid Lumbar Spine Model for the Fast Evaluation of Intradiscal Pressure and Mobility

Authors: Ali Hamadi Dicko, Nicolas Tong-Yette, Benjamin Gilles, François Faure, Olivier Palombi

Abstract:

A novel hybrid model of the lumbar spine, allowing fast static and dynamic simulations of the disc pressure and the spine mobility, is introduced in this work. Our contribution is to combine rigid bodies, deformable finite elements, articular constraints, and springs into a unique model of the spine. Each vertebra is represented by a rigid body controlling a surface mesh to model contacts on the facet joints and the spinous process. The discs are modeled using a heterogeneous tetrahedral finite element model. The facet joints are represented as elastic joints with six degrees of freedom, while the ligaments are modeled using non-linear one-dimensional elastic elements. The challenge we tackle is to make these different models efficiently interact while respecting the principles of Anatomy and Mechanics. The mobility, the intradiscal pressure, the facet joint force and the instantaneous center of rotation of the lumbar spine are validated against the experimental and theoretical results of the literature on flexion, extension, lateral bending as well as axial rotation. Our hybrid model greatly simplifies the modeling task and dramatically accelerates the simulation of pressure within the discs, as well as the evaluation of the range of motion and the instantaneous centers of rotation, without penalizing precision. These results suggest that for some types of biomechanical simulations, simplified models allow far easier modeling and faster simulations compared to usual full-FEM approaches without any loss of accuracy.

Keywords: Hybrid, modeling, fast simulation, lumbar spine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
313 Analysis of Conduction-Radiation Heat Transfer in a Planar Medium: Application of the Lattice Boltzmann Method

Authors: Ahmed Mahmoudi, Imen Mejri, Mohamed A. Abbassi, Ahmed Omri

Abstract:

In this paper, the 1-D conduction-radiation problem is solved by the lattice Boltzmann method. The effects of various parameters such as the scattering albedo, the conduction–radiation parameter and the wall emissivity are studied. In order to check on the accuracy of the numerical technique employed for the solution of the considered problem, the present numerical code was validated with the published study. The found results are in good agreement with those published

Keywords: Conduction, lattice Boltzmann method, planar medium, radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2527
312 Mechanical and Morphological Properties of Polypropylene and High Density Polyethylene Matrix Composites Reinforced with Surface Modified Nano Sized TiO2 Particles

Authors: Mirigul Altan, Huseyin Yildirim

Abstract:

Plastics occupy wide place in the applications of automotive, electronics and house goods. Especially reinforced plastics become popular because of their high strength besides their advantages of low weight and easy manufacturability. In this study, mechanical and morphological properties of polypropylene (PP) and high density polyethylene (HDPE) matrix composites reinforced with surface modified nano titan dioxide (TiO2) particles were investigated. Surface modification was made by coating the nano powders with maleic anhydride grafted styrene ethylene butylene styrene (SEBS-g-MA) and silane, respectively. After surface modification, PP/TiO2 and HDPE/TiO2 composites were obtained by using twin screw extruder at titan dioxide loading of 1 wt.%, 3 wt.% and 5 wt.%. Effects of surface modification were determined by thermal and morphological analysis. SEBS-g-MA provided bridging effect between TiO2 particles and polymer matrix while silane was effective as a dispersant. Depending on that, homogenous structures without agglomeration were obtained. Mechanical tests were performed on the injection moldings of the composites for obtaining the impact strength, tensile strength, stress at break, elongation and elastic modulus. Reinforced HDPE and PP moldings gave higher tensile strength and elastic modulus due to the rigid structure of TiO2. Slight increment was seen in stress at break. Elongation and impact strength decreased due to the stiffness of the nano titan dioxide.

Keywords: High density polyethylene, mechanical properties, nano TiO2, polypropylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3841
311 Effect of Si/Al Ratio on SSZ-13 Crystallization and Its Methanol-To-Olefins Catalytic Properties

Authors: Zhiqiang Xu, Hongfang Ma, Haitao Zhang, Weixin Qian, Weiyong Ying

Abstract:

SSZ-13 materials with different Si/Al ratio were prepared by varying the composition of aluminosilicate precursor solutions upon hydrothermal treatment at 150 °C. The Si/Al ratio of the initial system was systematically changed from 12.5 to infinity in order to study the limits of Al composition in precursor solutions for constructing CHA structure. The intermediates and final products were investigated by complementary techniques such as XRD, HRTEM, FESEM, and chemical analysis. NH3-TPD was used to study the Brønsted acidity of SSZ-13 samples with different Si/Al ratios. The effect of the Si/Al ratio on the precursor species, ultimate crystal size, morphology and yield was investigated. The results revealed that Al species determine the nucleation rate and the number of nuclei, which is tied to the morphology and yield of SSZ-13. The size of SSZ-13 increased and the yield decreased as the Si/Al ratio was improved. Varying Si/Al ratio of the initial system is a facile, commercially viable method of tailoring SSZ-13 crystal size and morphology. Furthermore, SSZ-13 materials with different Si/Al ratio were tested as catalysts for the methanol to olefins (MTO) reaction at 350 °C. SSZ-13 with the Si/Al ratio of 35 shows the best MTO catalytic performance.

Keywords: Crystallization, MTO, Si/Al ratio, SSZ-13.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
310 Evolution of the Hydrogen Atom: An Alternative to the Big Bang Theory

Authors: Ghassan H. Halasa

Abstract:

Elementary particles are created in pairs of equal and opposite momentums at a reference frame at the speed of light. The speed of light reference frame is viewed as a point in space as observed by observer at rest. This point in space is the bang location of the big bang theory. The bang in the big bang theory is not more than sustained flow of pairs of positive and negative elementary particles. Electrons and negative charged elementary particles are ejected from this point in space at velocities faster than light, while protons and positively charged particles obtain velocities lower than light. Subsonic masses are found to have real and positive charge, while supersonic masses are found to be negative and imaginary indicating that the two masses are of different entities. The electron-s super-sonic speed, as viewed by rest observer was calculated and found to be less than the speed of light and is little higher than the electron speed in Bohr-s orbit. The newly formed hydrogen gas temperature was found to be in agreement with temperatures found on newly formed stars. Universe expansion was found to be in agreement. Partial mass and charge elementary particles and particles with momentum only were explained in the context of this theoretical approach.

Keywords: Evolution of Matter, Multidimensional spaces, relativity, Big Bang Theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
309 The Effects of Tissue Optical Parameters and Interface Reflectivity on Light Diffusion in Biological Tissues

Authors: MA. Ansari

Abstract:

In cancer progress, the optical properties of tissues like absorption and scattering coefficient change, so by these changes, we can trace the progress of cancer, even it can be applied for pre-detection of cancer. In this paper, we investigate the effects of changes of optical properties on light penetrated into tissues. The diffusion equation is widely used to simulate light propagation into biological tissues. In this study, the boundary integral method (BIM) is used to solve the diffusion equation. We illustrate that the changes of optical properties can modified the reflectance or penetrating light.

Keywords: Diffusion equation, boundary element method, refractive index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
308 The Localised Wrinkling of a Stretched Bi-Annular Thin Plate

Authors: Xiang Liu, Ciprian Coman

Abstract:

The wrinkling of a thin elastic bi-annular plate with piecewise-constant mechanical properties, subjected to radial stretching, is considered. The critical wrinkling stretching loading and the corresponding wrinkling patterns are extensively investigated, together with the roles played by both the geometrical and mechanical parameters.

Keywords: bi-annular plate, wrinkling pattern, critical stretching loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
307 Haemodynamics Study in Subject Specific Carotid Bifurcation Using FSI

Authors: S. M. Abdul Khader, Anurag Ayachit, Raghuvir Pai, K. A. Ahmed, V. R. K. Rao, S. Ganesh Kamath

Abstract:

The numerical simulation has made tremendous advances in investigating the blood flow phenomenon through elastic arteries. Such study can be useful in demonstrating the disease progression and hemodynamics of cardiovascular diseases such as atherosclerosis. In the present study, patient specific case diagnosed with partially stenosed complete right ICA and normal left carotid bifurcation without any atherosclerotic plaque formation is considered. 3D patient specific carotid bifurcation model is generated based on CT scan data using MIMICS-4.0 and numerical analysis is performed using FSI solver in ANSYS-14.5. The blood flow is assumed to be incompressible, homogenous and Newtonian, while the artery wall is assumed to be linearly elastic. The two-way sequentially coupled transient FSI analysis is performed using FSI solver for three pulse cycles. The hemodynamic parameters such as flow pattern, Wall Shear Stress, pressure contours and arterial wall deformation are studied at the bifurcation and critical zones such as stenosis. The variation in flow behavior is studied throughout the pulse cycle. Also, the simulation results reveal that there is a considerable increase in the flow behavior in stenosed carotid in contrast to the normal carotid bifurcation system. The investigation also demonstrates the disturbed flow pattern especially at the bifurcation and stenosed zone elevating the hemodynamics, particularly during peak systole and later part of the pulse cycle. The results obtained agree well with the clinical observation and demonstrates the potential of patient specific numerical studies in prognosis of disease progression and plaque rupture.

Keywords: Fluid-Structure Interaction, arterial stenosis, Wall Shear Stress, Carotid Artery Bifurcation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
306 Protein Delivery from Polymeric Nanoparticles

Authors: G. Spada, E. Gavini, P. Giunchedi

Abstract:

Aim of this work was to compare the efficacy of two loading methods of proteins onto polymeric nanocarriers: adsorption and encapsulation methods. Preliminary studies of protein loading were done using Bovine Serum Albumin (BSA) as model protein. Nanocarriers were prepared starting from polylactic co-glycolic acid (PLGA) polymer; production methods used are two different variants of emulsion evaporation method. Nanoparticles obtained were analyzed in terms of dimensions by Dynamic Light Scattering and Loading Efficiency of BSA by Bradford Assay. Loaded nanoparticles were then submitted to in-vitro protein dissolution test in order to study the effect of the delivery system on the release rate of the protein.

Keywords: Drug delivery, nanoparticles, PLGA, proteinadsorption, protein encapsulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2460
305 Modern Seismic Design Approach for Buildings with Hysteretic Dampers

Authors: Vanessa A. Segovia, Sonia E. Ruiz

Abstract:

The use of energy dissipation systems for seismic applications has increased worldwide, thus it is necessary to develop practical and modern criteria for their optimal design. Here, a direct displacement-based seismic design approach for frame buildings with hysteretic energy dissipation systems (HEDS) is applied. The building is constituted by two individual structural systems consisting of: 1) a main elastic structural frame designed for service loads; and 2) a secondary system, corresponding to the HEDS, that controls the effects of lateral loads. The procedure implies to control two design parameters: a) the stiffness ratio (α=Kframe/Ktotal system), and b) the strength ratio (γ=Vdamper/Vtotal system). The proposed damage-controlled approach contributes to the design of a more sustainable and resilient building because the structural damage is concentrated on the HEDS. The reduction of the design displacement spectrum is done by means of a damping factor (recently published) for elastic structural systems with HEDS, located in Mexico City. Two limit states are verified: serviceability and near collapse. Instead of the traditional trial-error approach, a procedure that allows the designer to establish the preliminary sizes of the structural elements of both systems is proposed. The design methodology is applied to an 8-story steel building with buckling restrained braces, located in soft soil of Mexico City. With the aim of choosing the optimal design parameters, a parametric study is developed considering different values of હ and ઻. The simplified methodology is for preliminary sizing, design, and evaluation of the effectiveness of HEDS, and it constitutes a modern and practical tool that enables the structural designer to select the best design parameters. 

Keywords: Damage-controlled buildings, direct displacementbased seismic design, optimal hysteretic energy dissipation systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315
304 Stiffness Modeling of 3-PRS Mechanism

Authors: Xiaohui Han, Yuhan Wang, Jing Shi

Abstract:

This paper proposed a stiffness analysis method for a 3-PRS mechanism for welding thick aluminum plate using FSW technology. In the molding process, elastic deformation of lead-screws and links are taken into account. This method is based on the virtual work principle. Through a survey of the commonly used stiffness performance indices, the minimum and maximum eigenvalues of the stiffness matrix are used to evaluate the stiffness of the 3-PRS mechanism. Furthermore, A FEA model has been constructed to verify the method. Finally, we redefined the workspace using the stiffness analysis method.

Keywords: 3-PRS, parallel mechanism, stiffness analysis, workspace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
303 Development of Material Analyzing Software Using X-Ray Diffraction

Authors: Le Chi Cuong

Abstract:

X-ray diffraction is an effective mean for analyzing material properties. This paper developed a new computational software for determining the properties of crystalline materials such as elastic constants, residual stresses, surface hardness, phase components, and etc. The results computed from the X-ray diffraction method were compared to those from the traditional methods and they are in the 95% confidential limits, showing that the newly developed software has high reproducibility, opening a possibility of its commercialization.

Keywords: X-ray diffraction, Nondestructive evaluation, Hardness, Residual stress, Phase determination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916