Search results for: Concrete Sandwich Panels
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 897

Search results for: Concrete Sandwich Panels

267 Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings

Authors: Miguel A. Orellana, Sonia E. Ruiz, Juan Bojórquez

Abstract:

Optimal load factors (dead, live and seismic) used for the design of buildings may be different, depending of the seismic ground motion characteristics to which they are subjected, which are closely related to the type of soil conditions where the structures are located. The influence of the type of soil on those load factors, is analyzed in the present study. A methodology that is useful for establishing optimal load factors that minimize the cost over the life cycle of the structure is employed; and as a restriction, it is established that the probability of structural failure must be less than or equal to a prescribed value. The life-cycle cost model used here includes different types of costs. The optimization methodology is applied to two groups of reinforced concrete buildings. One set (consisting on 4-, 7-, and 10-story buildings) is located on firm ground (with a dominant period Ts=0.5 s) and the other (consisting on 6-, 12-, and 16-story buildings) on soft soil (Ts=1.5 s) of Mexico City. Each group of buildings is designed using different combinations of load factors. The statistics of the maximums inter-story drifts (associated with the structural capacity) are found by means of incremental dynamic analyses. The buildings located on firm zone are analyzed under the action of 10 strong seismic records, and those on soft zone, under 13 strong ground motions. All the motions correspond to seismic subduction events with magnitudes M=6.9. Then, the structural damage and the expected total costs, corresponding to each group of buildings, are estimated. It is concluded that the optimal load factors combination is different for the design of buildings located on firm ground than that for buildings located on soft soil.

Keywords: Life-cycle cost, optimal load factors, reinforced concrete buildings, total costs, type of soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
266 Collapse Load Analysis of Reinforced Concrete Pile Group in Liquefying Soils under Lateral Loading

Authors: Pavan K. Emani, Shashank Kothari, V. S. Phanikanth

Abstract:

The ultimate load analysis of RC pile groups has assumed a lot of significance under liquefying soil conditions, especially due to post-earthquake studies of 1964 Niigata, 1995 Kobe and 2001 Bhuj earthquakes. The present study reports the results of numerical simulations on pile groups subjected to monotonically increasing lateral loads under design amounts of pile axial loading. The soil liquefaction has been considered through the non-linear p-y relationship of the soil springs, which can vary along the depth/length of the pile. This variation again is related to the liquefaction potential of the site and the magnitude of the seismic shaking. As the piles in the group can reach their extreme deflections and rotations during increased amounts of lateral loading, a precise modeling of the inelastic behavior of the pile cross-section is done, considering the complete stress-strain behavior of concrete, with and without confinement, and reinforcing steel, including the strain-hardening portion. The possibility of the inelastic buckling of the individual piles is considered in the overall collapse modes. The model is analysed using Riks analysis in finite element software to check the post buckling behavior and plastic collapse of piles. The results confirm the kinds of failure modes predicted by centrifuge test results reported by researchers on pile group, although the pile material used is significantly different from that of the simulation model. The extension of the present work promises an important contribution to the design codes for pile groups in liquefying soils.

Keywords: Collapse load analysis, inelastic buckling, liquefaction, pile group.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856
265 Numerical Method Based On Initial Value-Finite Differences for Free Vibration of Stepped Thickness Plates

Authors: Ahmed M. Farag, Wael F. Mohamed, Atef A. Ata, Burhamy M. Burhamy

Abstract:

The main objective of the present paper is to derive an easy numerical technique for the analysis of the free vibration through the stepped regions of plates. Based on the utilities of the step by step integration initial values IV and Finite differences FD methods, the present improved Initial Value Finite Differences (IVFD) technique is achieved. The first initial conditions are formulated in convenient forms for the step by step integrations while the upper and lower edge conditions are expressed in finite difference modes. Also compatibility conditions are created due to the sudden variation of plate thickness. The present method (IVFD) is applied to solve the fourth order partial differential equation of motion for stepped plate across two different panels under the sudden step compatibility in addition to different types of end conditions. The obtained results are examined and the validity of the present method is proved showing excellent efficiency and rapid convergence.

Keywords: Vibrations, Step by Step Integration, Stepped plate, Boundary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
264 Effect of Interior Brick-infill Partitions on the Progressive Collapse Potential of a RC Building: Linear Static Analysis Results

Authors: Meng-Hao Tsai, Tsuei-Chiang Huang

Abstract:

Interior brick-infill partitions are usually considered as non-structural components, and only their weight is accounted for in practical structural design. In this study, the brick-infill panels are simulated by compression struts to clarify their effect on the progressive collapse potential of an earthquake-resistant RC building. Three-dimensional finite element models are constructed for the RC building subjected to sudden column loss. Linear static analyses are conducted to investigate the variation of demand-to-capacity ratio (DCR) of beam-end moment and the axial force variation of the beams adjacent to the removed column. Study results indicate that the brick-infill effect depends on their location with respect to the removed column. As they are filled in a structural bay with a shorter span adjacent to the column-removed line, more significant reduction of DCR may be achieved. However, under certain conditions, the brick infill may increase the axial tension of the two-span beam bridging the removed column.

Keywords: Progressive collapse, brick-infill partition, compression strut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
263 Lightweight Materials for Building Finishing

Authors: Sarka Keprdova, Nikol Zizkova

Abstract:

This paper focuses on the presentation of results which were obtained as a part of the project FR-TI 3/742: “System of Lightweight Materials for Finishing of Buildings with Waste Raw Materials”. Attention was paid to the light weighting of polymermodified mortars applicable as adhesives, screeds and repair mortars. In terms of repair mortars, they were ones intended for the sanitation of aerated concrete.

Keywords: Additives, light aggregates, lightweight materials, lightweight mortars, polymer-modified mortars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2889
262 Nice Stadium: Design of a Flat Single Layer ETFE Roof

Authors: A. Escoffier, A. Albrecht, F. Consigny

Abstract:

In order to host the Football Euro in 2016, many French cities have launched architectural competitions in recent years to improve the quality of their stadiums. The winning project in Nice was designed by Wilmotte architects together with Elioth structural engineers. It has a capacity of 35,000 seats.Its roof structure consists of a complex 3D shape timber and steel lattice and is covered by 25,000m² of ETFE, 10,500m² of PES-PVC fabric and 8,500m² of photovoltaic panels.

This paper focuses on the ETFE part of the cover. The stadium is one of the first constructions to use flat single layer ETFE on such a big area. Due to its relatively recent appearance in France, ETFE structures are not yet covered by any regulations and the existing codes for fabric structures cannot be strictly applied. Rather, they are considered as cladding systems and therefore have to be approved by an “Appréciation Technique d’Expérimentation” (ATEx), during which experimental tests have to be performed. We explain the method that we developed to justify the ETFE, which eventually led to bi-axial tests to clarify the allowable stress in the film.

Keywords: Biaxial test, creep, ETFE, single layer, stadium roof.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3289
261 A Model of Sustainability in the Accommodation Sector

Authors: L. S. Zavodna, J. Zavodny Pospisil

Abstract:

The aim of this paper is to identify the factors for sustainability in the accommodation sector. Although sustainability is a current trend in tourism, not many facilities know how to apply the concept in practice. This paper presents a model for the implementation of sustainability in hotels, hostels, campgrounds, or other facilities. First, there are identified sections of each accommodation facility, which can contribute to sustainability. Furthermore, concrete steps are presented to transfer this model into reality.

Keywords: Accommodation sector, model, sustainable tourism, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
260 Contribution to the Study and Optimal Exploitation of a Solar Power System for a Semi-Arid Zone (Case Study: Ferkene, Algeria)

Authors: D. Dib, W. Guebabi, M. B. Guesmi

Abstract:

The objective of this paper is a contribution to a study of power supply by solar energy system called a common Ferkène north of Algerian desert in the semi-arid area. The optimal exploitation of the system, goes through stages of study and essential design, the choice of the model of the photovoltaic panel, the study of behavior with all the parameters involved in simulation before fixing the trajectory tracking the maximum point the power to extract (MPPT), form the essential platform to shape the design of the solar system set up to supply the town Ferkène without considering the grid. The identification of the common Ferkène by the collection of geographical, meteorological, demographic and electrical provides a basis uniform and important data. The results reflect a valid fictive model for any attempt to study and design a solar system to supply an arid or semi-arid zone by electrical energy from photovoltaic panels.

Keywords: Solar power, photovoltaic panel, Boost converter, supply, design, electric power, Ferkène, Algeria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
259 Impact of Out-of-Plane Stiffness of the Diaphragm on Deflection of Wood Light-Frame Shear Walls

Authors: M. M. Bagheri, G. Doudak, M. Gong

Abstract:

The in-plane rigidity of light frame diaphragms has been investigated by researchers due to the importance of this subsystem regarding lateral force distribution between the lateral force resisting system (LFRS). Where research has lacked is in evaluating the impact of out-of-plane raigidity of the diaphragm on the deflection of shear walls. This study aims at investigating the effect of the diaphragm on the behavior of wood light-frame shear walls, in particular its out-of-plane rigidity was simulated by modeling the floors as beam. The out of plane stiffness of the diaphragm was investigated for idealized (infinitely stiff or flexible) as well as “realistic”. The results showed reductions in the shear wall deflection in the magnitude of approximately 80% considering the out of plane rigidity of the diaphragm. It was also concluded that considering conservative estimates of out-of-plane stiffness might lead to a very significant reduction in deflection and that assuming the floor diaphragm to be infinitely rigid out of plan seems to be reasonable. For diaphragms supported on multiple panels, further reduction in the deflection was observed. More work, particularly at the experimental level, is needed to verify the finding obtained in the numerical investigation related to the effect of out of plane diaphragm stiffness.

Keywords: Deflection of light-frame wood shear walls, out-of-plane stiffness of the diaphragm, initial stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
258 Survey of Potato Viral Infection Using Das-Elisa Method in Georgia

Authors: Maia Kukhaleishvili, Ekaterine Bulauri, Iveta Megrelishvili, Tamar Shamatava, Tamar Chipashvili

Abstract:

Plant viruses can cause loss of yield and quality in a lot of important crops. Symptoms of pathogens are variable depending on the cultivars and virus strain. Selection of resistant potato varieties would reduce the risk of virus transmission and significant economic impact. Other way to avoid reduced harvest yields is regular potato seed production sampling and testing for viral infection. The aim of this study was to determine the occurrence and distribution of viral diseases according potato cultivars for further selection of virus-free material in Georgia. During the summer 2015- 2016, 5 potato cultivars (Sante, Laura, Jelly, Red Sonia, Anushka) at 5 different farms located in Akhalkalaki were tested for 6 different potato viruses: Potato virus A (PVA), Potato virus M (PVM), Potato virus S (PVS), Potato virus X (PVX), Potato virus Y (PVY) and potato leaf roll virus (PLRV). A serological method, Double Antibody Sandwich-Enzyme linked Immunosorbent Assay (DASELISA) was used at the laboratory to analyze the results. The result showed that PVY (21.4%) and PLRV (19.7%) virus presence in collected samples was relatively high compared to others. Researched potato cultivars except Jelly and Laura were infected by PVY with different concentrations. PLRV was found only in three potato cultivars (Sante, Jelly, Red Sonia) and PVM virus (3.12%) was characterized with low prevalence. PVX, PVA and PVS virus infection was not reported. It would be noted that 7.9% of samples were containing PVY/PLRV mix infection. Based on the results it can be concluded that PVY and PLRV infections are dominant in all research cultivars. Therefore significant yield losses are expected. Systematic, long-term control of potato viral infection, especially seed-potatoes, must be regarded as the most important factor to increase seed productivity.

Keywords: Diseases, infection, potato, virus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892
257 A Maximum Power Point Tracker for PV Panels Using SEPIC Converter

Authors: S. Ganesh, J. Janani, G. Besliya Angel

Abstract:

Photovoltaic (PV) energy is one of the most important renewable energy sources. Maximum Power Point Tracking (MPPT) techniques should be used in photovoltaic systems to maximize the PV panel output power by tracking continuously the maximum power point which depends on panel’s temperature and on irradiance conditions. Incremental conductance control method has been used as MPPT algorithm. The methodology is based on connecting a pulse width modulated dc/dc SEPIC converter, which is controlled by a microprocessor based unit. The SEPIC converter is one of the buck-boost converters which maintain the output voltage as constant irrespective of the solar isolation level. By adjusting the switching frequency of the converter the maximum power point has been achieved. The main difference between the method used in the proposed MPPT systems and other technique used in the past is that PV array output power is used to directly control the dc/dc converter thus reducing the complexity of the system. The resulting system has high efficiency, low cost and can be easily modified. The tracking capability has been verified experimentally with a 10 W solar panel under a controlled experimental setup. The SEPIC converter and their control strategies has been analyzed and simulated using Simulink/Matlab software.

Keywords: Maximum Power Point Tracking, Microprocessor, PV Module, SEPIC Converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5921
256 Greywater Treatment Using Activated Biochar Produced from Agricultural Waste

Authors: Pascal Mwenge, Tumisang Seodigeng

Abstract:

The increase in urbanisation in South Africa has led to an increase in water demand and a decline in freshwater supply. Despite this, poor water usage is still a major challenge in South Africa, for instance, freshwater is still used for non-drinking applications. The freshwater shortage can be alleviated by using other sources of water for non-portable purposes such as greywater treated with activated biochar produced from agricultural waste. The success of activated biochar produced from agricultural waste to treat greywater can be both economically and environmentally beneficial. Greywater treated with activated biochar produced from agricultural waste is considered a cost-effective wastewater treatment.  This work was aimed at determining the ability of activated biochar to remove Total Suspended Solids (TSS), Ammonium (NH4-N), Nitrate (NO3-N), and Chemical Oxygen Demand (COD) from greywater. The experiments were carried out in 800 ml laboratory plastic cylinders used as filter columns. 2.5 cm layer of gravel was used at the bottom and top of the column to sandwich the activated biochar material. Activated biochar (200 g and 400 g) was loaded in a column and used as a filter medium for greywater. Samples were collected after a week and sent for analysis. Four types of greywater were treated: Kitchen, floor cleaning water, shower and laundry water. The findings showed: 95% removal of TSS, 76% of NO3-N and 63% of COD on kitchen greywater and 85% removal of NH4-N on bathroom greywater, as highest removal of efficiency of the studied pollutants. The results showed that activated biochar produced from agricultural waste reduces a certain amount of pollutants from greywater. The results also indicated the ability of activated biochar to treat greywater for onsite non-potable reuse purposes.

Keywords: Activated biochar produced from agriculture waste, ammonium (NH4-N), chemical oxygen demand (COD), greywater, nitrate (NO3-N), total suspended solids (TSS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361
255 Performance Based Seismic Retrofit of Masonry Infilled Reinforced Concrete Frames Using Passive Energy Dissipation Devices

Authors: Alok Madan, Arshad K. Hashmi

Abstract:

The paper presents a plastic analysis procedure based on the energy balance concept for performance based seismic retrofit of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames with a ‘soft’ ground story using passive energy dissipation (PED) devices with the objective of achieving a target performance level of the retrofitted R/C frame for a given seismic hazard level at the building site. The proposed energy based plastic analysis procedure was employed for developing performance based design (PBD) formulations for PED devices for a simulated application in seismic retrofit of existing frame structures designed in compliance with the prevalent standard codes of practice. The PBD formulations developed for PED devices were implemented for simulated seismic retrofit of a representative code-compliant masonry infilled R/C frame with a ‘soft’ ground story using friction dampers as the PED device. Non-linear dynamic analyses of the retrofitted masonry infilled R/C frames is performed to investigate the efficacy and accuracy of the proposed energy based plastic analysis procedure in achieving the target performance level under design level earthquakes. Results of non-linear dynamic analyses demonstrate that the maximum inter-story drifts in the masonry infilled R/C frames with a ‘soft’ ground story that is retrofitted with the friction dampers designed using the proposed PBD formulations are controlled within the target drifts under near-field as well far-field earthquakes.

Keywords: Energy Methods, Masonry Infilled Frame, Near-field Earthquakes, Seismic Protection, Supplemental damping devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2504
254 A New Design of Mobile Thermoelectric Power Generation System

Authors: Hsin-Hung Chang, Jin-Lung Guan, Ming-Ta Yang

Abstract:

This paper presents a compact thermoelectric power generator system based on temperature difference across the element. The system can transfer the burning heat energy to electric energy directly. The proposed system has a thermoelectric generator and a power control box. In the generator, there are 4 thermoelectric modules (TEMs), each of which uses 2 thermoelectric chips (TEs) and 2 cold sinks, 1 thermal absorber, and 1 thermal conduction flat board. In the power control box, there are 1 storing energy device, 1 converter, and 1 inverter. The total net generating power is about 11W. This system uses commercial portable gas stoves or burns timber or the coal as the heat source, which is easily obtained. It adopts solid-state thermoelectric chips as heat inverter parts. The system has the advantages of being light-weight, quite, and mobile, requiring no maintenance, and havng easily-supplied heat source. The system can be used a as long as burning is allowed. This system works well for highly-mobilized outdoors situations by providing a power for illumination, entertainment equipment or the wireless equipment at refuge. Under heavy storms such as typhoon, when the solar panels become ineffective and the wind-powered machines malfunction, the thermoelectric power generator can continue providing the vital power.

Keywords: Thermoelectric chip, seekback effect, thermo electric power generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2754
253 Experimental Characterization of the Thermal Behavior of a Sawdust Mortar

Authors: F. Taouche-Kheloui, O. Fedaoui-Akmoussi, K. Ait tahar, Li. Alex

Abstract:

Currently, the reduction of energy consumption, through the use of abundant and recyclable natural materials, for better thermal insulation represents an important area of research. To this end, the use of bio-sourced materials has been identified as one of the green sectors with a very high economic development potential for the future. Because of its role in reducing the consumption of fossil-based raw materials, it contributes significantly to the storage of atmospheric carbon, limits greenhouse gas emissions and creates new economic opportunities. This study constitutes a contribution to the elaboration and the experimental characterization of the thermal behavior of a sawdust-reduced mortar matrix. We have taken into account the influence of the size of the grain fibers of sawdust, hence the use of three different ranges and also different percentage in the different confections. The intended practical application consists of producing a light weight compound at a lower cost to ensure a better thermal and acoustic behavior compared to that existing in the field, in addition to the desired resistances. Improving energy performance, while reducing greenhouse gas emissions from the building sector, is amongst the objectives to be achieved. The results are very encouraging and highlight the value of the proposed design of organic-source mortar panels which have specific mechanical properties acceptable for their use, low densities, lower cost of manufacture and labor, and above all a positive impact on the environment.

Keywords: Mortar, sawdust waste, thermal, experimental, analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
252 Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading

Authors: H. Meddah, M. Berediaf-Bourahla, B. El-Djouzi, N. Bourahla

Abstract:

Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis.

Keywords: Cold-formed steel, cyclic loading, modeling technique, nonlinear analysis, shear wall panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
251 Chemical Analysis of Available Portland Cement in Libyan Market Using X-Ray Fluorescence

Authors: M. A. Elbagermia, A. I. Alajtala, M. Alkerzab

Abstract:

This study compares the quality of different brands of Portland Cement (PC) available in Libyan market. The amounts of chemical constituents like SiO2, Al2O3, Fe2O3, CaO, MgO, SO3 and Lime Saturation Factor (LSF) were determined in accordance with Libyan (L.S.S) and Amrican (A.S.S) Standard Specifications. All the cement studies were found to be good for concrete work especially where no special property is required. The chemical and mineralogical analyses for studied clinker samples show that the dominant phases composition are C3S and C2S while the C3A and C4AF are less abundant.

Keywords: Portland cement, Chemical Composition, Libyan market, X-ray fluorescence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2845
250 Requirements and Guidelines for the Design of Team Awareness Systems

Authors: Carsten Röcker

Abstract:

This paper presents a set of guidelines for the design of multi-user awareness systems. In a first step, general requirements for team awareness systems are analyzed. In the second part of the paper, the identified requirements are aggregated and transformed into concrete design guidelines for the development of team awareness systems.

Keywords: User Interface Design, Awareness Systems, User- Centered Design, Human Factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
249 Microscopic Analysis of Interfacial Transition Zone of Cementitious Composites Prepared by Various Mixing Procedures

Authors: Josef Fládr, Jiří Němeček, Veronika Koudelková, Petr Bílý

Abstract:

Mechanical parameters of cementitious composites differ quite significantly based on the composition of cement matrix. They are also influenced by mixing times and procedure. The research presented in this paper was aimed at identification of differences in microstructure of normal strength (NSC) and differently mixed high strength (HSC) cementitious composites. Scanning electron microscopy (SEM) investigation together with energy dispersive X-ray spectroscopy (EDX) phase analysis of NSC and HSC samples was conducted. Evaluation of interfacial transition zone (ITZ) between the aggregate and cement matrix was performed. Volume share, thickness, porosity and composition of ITZ were studied. In case of HSC, samples obtained by several different mixing procedures were compared in order to find the most suitable procedure. In case of NSC, ITZ was identified around 40-50% of aggregate grains and its thickness typically ranged between 10 and 40 µm. Higher porosity and lower share of clinker was observed in this area as a result of increased water-to-cement ratio (w/c) and the lack of fine particles improving the grading curve of the aggregate. Typical ITZ with lower content of Ca was observed only in one HSC sample, where it was developed around less than 15% of aggregate grains. The typical thickness of ITZ in this sample was similar to ITZ in NSC (between 5 and 40 µm). In the remaining four HSC samples, no ITZ was observed. In general, the share of ITZ in HSC samples was found to be significantly smaller than in NSC samples. As ITZ is the weakest part of the material, this result explains to large extent the improved mechanical properties of HSC compared to NSC. Based on the comparison of characteristics of ITZ in HSC samples prepared by different mixing procedures, the most suitable mixing procedure from the point of view of properties of ITZ was identified.

Keywords: Energy dispersive X-ray spectroscopy, high strength concrete, interfacial transition zone, mixing procedure, normal strength concrete, scanning electron microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
248 Investigation of Thermal and Mechanical Loading on Functional Graded Material Plates

Authors: Mine Uslu Uysal

Abstract:

This paper interested in the mechanical deformation behavior of shear deformable functionally graded ceramic-metal (FGM) plates. Theoretical formulations are based on power law theory when build up functional graded material. The mechanical properties of the plate are graded in the thickness direction according to a power-law Displacement and stress is obtained using finite element method (FEM). The load is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. An FGM’s gradation in material properties allows the designer to tailor material response to meet design criteria. An FGM made of ceramic and metal can provide the thermal protection and load carrying capability in one material thus eliminating the problem of thermo-mechanical deformation behavior. This thesis will explore analysis of FGM flat plates and shell panels, and their applications to r structural problems. FGMs are first characterized as flat plates under pressure in order to understand the effect variation of material properties has on structural response. In addition, results are compared to published results in order to show the accuracy of modeling FGMs using ABAQUS software.

Keywords: Functionally graded material, finite element method, thermal and structural loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3517
247 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2714
246 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor

Abstract:

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Keywords: Intelligent transportation systems, object detection, video processing, road traffic, vehicle counting, vehicle classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
245 Moisture Diffusivity of AAC with Different Densities

Authors: Tomáš Korecký, Kamil Ďurana, Miroslava Lapková, Robert Černý

Abstract:

Method of determining of moisture diffusivity on two types of autoclaved aerated concretes with different bulk density is represented in the paper. On the specimens were measured one dimensional water transport only on liquid phase. Ever evaluation was done from moisture profiles measured in specific times by capacitance moisture meter. All values from capacitance meter were recalculated to moisture content by mass. Moisture diffusivity was determined in dependence on both moisture and temperature. The experiment temperatures were set at values 55, 65, 75 and 85°C.

Keywords: moisture diffusivity, autoclaved aerated concrete, capacitance moisture meter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
244 Generalized Vortex Lattice Method for Predicting Characteristics of Wings with Flap and Aileron Deflection

Authors: Mondher Yahyaoui

Abstract:

A generalized vortex lattice method for complex lifting surfaces with flap and aileron deflection is formulated. The method is not restricted by the linearized theory assumption and accounts for all standard geometric lifting surface parameters: camber, taper, sweep, washout, dihedral, in addition to flap and aileron deflection. Thickness is not accounted for since the physical lifting body is replaced by a lattice of panels located on the mean camber surface. This panel lattice setup and the treatment of different wake geometries is what distinguish the present work form the overwhelming majority of previous solutions based on the vortex lattice method. A MATLAB code implementing the proposed formulation is developed and validated by comparing our results to existing experimental and numerical ones and good agreement is demonstrated. It is then used to study the accuracy of the widely used classical vortex-lattice method. It is shown that the classical approach gives good agreement in the clean configuration but is off by as much as 30% when a flap or aileron deflection of 30° is imposed. This discrepancy is mainly due the linearized theory assumption associated with the conventional method. A comparison of the effect of four different wake geometries on the values of aerodynamic coefficients was also carried out and it is found that the choice of the wake shape had very little effect on the results.

Keywords: Aileron deflection, camber-surface-bound vortices, classical VLM, Generalized VLM, flap deflection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5009
243 Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel

Authors: Rouaz Idriss, Bourahla Nour-Eddine, Kahlouche Farah, Rafa Sid Ali

Abstract:

The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.

Keywords: Cold Formed Steel Shear Wall Panel, CFS-SWP, micro modeling, nonlinear analysis, strip method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
242 Personal Digital Assistants for Fieldwork Training in College Campus

Authors: Takaharu Miyoshi, Tadahiko Higuchi

Abstract:

Education supported by mobile computers has been widely done for some time. Teachers have attempted to use mobile computers and to find concrete subjects for student-s fieldwork training in college education. The purpose of this research is to develop software for Personal Digital Assistant (PDA) to conduct fieldwork in our campus, and to report a fieldwork class using PDAs in the curriculum of the Department of Regional Environment Studies.

Keywords: Development of software for PDA, fieldwork training, computer supported education, experiential learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
241 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing

Authors: S. Aziz, B. Alexander, C. Gengnagel, S. Weinzierl

Abstract:

This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the Building Information Modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.

Keywords: Acoustical design, additive manufacturing, computational design, multimodal optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 514
240 Use of Information Technology in the Government of a State

Authors: Pavel E. Golosov, Vladimir I. Gorelov, Oksana L. Karelova

Abstract:

There are visible changes in the world organization, environment and health of national conscience that create a background for discussion on possible redefinition of global, state and regional management goals. Authors apply the sustainable development criteria to a hierarchical management scheme that is to lead the world community to non-contradictory growth. Concrete definitions are discussed in respect of decision-making process representing the state mostly. With the help of system analysis it is highlighted how to understand who would carry the distinctive sign of world leadership in the nearest future.

Keywords: Decision-making, information technology, public administration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064
239 SystemC Modeling of Adaptive Least Mean Square Filter

Authors: Kyu Han Kim, Soon Kyu Kwon, Heung Sun Yoon, Jong Tae Kim

Abstract:

In this paper, we demonstrate the adaptive least-mean-square (LMS) filter modeling using SystemC. SystemC is a modeling language that allows designer to model both hardware and software component and makes it possible to design from high level system of abstraction to low level system of abstraction. We produced five adaptive least-mean-square filter models that are classed as five abstraction levels using SystemC proceeding from the abstract model to the more concrete model.

Keywords: Adaptive Filter, Least-Mean-Square Algorithm, SystemC, Transversal Fir Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497
238 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions

Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani

Abstract:

Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.

Keywords: Masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1141