%0 Journal Article
	%A Ahmad B. Habieb and  Gabriele Milani and  Tavio Tavio and  Federico Milani
	%D 2017
	%J International Journal of Civil and Environmental Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 125, 2017
	%T Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions
	%U https://publications.waset.org/pdf/10007169
	%V 125
	%X Housings in developing countries have often inadequate
seismic protection, particularly for masonry. People choose this type
of structure since the cost and application are relatively cheap.
Seismic protection of masonry remains an interesting issue among
researchers. In this study, we develop a low-cost seismic isolation
system for masonry using fiber reinforced elastomeric isolators. The
elastomer proposed consists of few layers of rubber pads and fiber
lamina, making it lower in cost comparing to the conventional
isolators. We present a finite element (FE) analysis to predict the
behavior of the low cost rubber isolators undergoing moderate
deformations. The FE model of the elastomer involves a hyperelastic
material property for the rubber pad. We adopt a Yeoh hyperelasticity
model and estimate its coefficients through the available experimental
data. Having the shear behavior of the elastomers, we apply that
isolation system onto small masonry housing. To attach the isolators
on the building, we model the shear behavior of the isolation system
by means of a damped nonlinear spring model. By this attempt, the
FE analysis becomes computationally inexpensive. Several ground
motion data are applied to observe its sensitivity. Roof acceleration
and tensile damage of walls become the parameters to evaluate
the performance of the isolators. In this study, a concrete damage
plasticity model is used to model masonry in the nonlinear range.
This tool is available in the standard package of Abaqus FE software.
Finally, the results show that the low-cost isolators proposed are
capable of reducing roof acceleration and damage level of masonry
housing. Through this study, we are also capable of monitoring the
shear deformation of isolators during seismic motion. It is useful to
determine whether the isolator is applicable. According to the results,
the deformations of isolators on the benchmark one story building are
relatively small.
	%P 664 - 670